Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 486: 107826, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589993

RESUMO

An efficient and environmentally friendly system for producing 5-hydroxymethylfurfural (5-HMF) from fructose has been proposed. Substrate concentration is an important factor for practical application of the process; however, use of a high concentration of fructose has rarely been tested in the reaction because the conditions accelerate intermolecular side reactions to form adhesive humins. Humin byproducts stuck on reactor surfaces can make the production of 5-HMF on an industrial scale difficult. Therefore, developing a catalytic reaction system that can promote the synthesis of 5-HMF from highly concentrated fructose without causing adhesion of humins to reactors is needed. The present study demonstrated that activated carbons are promising materials for this system. Activated carbon catalyzed the conversion of fructose to 5-HMF without adhesion of humins to reactor vessels under practical conditions of high substrate concentration up to 73.2%. The catalytic activity was determined not only by the amount of surface weakly acidic oxygenated groups but also by the adsorption of fructose. In addition, strong adsorption of 5-HMF led to low selectivity of 5-HMF and the formation of adhesive humins. This is the first report to describe the synthesis of 5-HMF from solutions containing a fructose concentration greater than 70%.


Assuntos
Carvão Vegetal/química , Frutose/química , Furaldeído/análogos & derivados , Água/química , Catálise , Técnicas de Química Sintética , Furaldeído/síntese química , Furaldeído/química , Substâncias Húmicas , Soluções , Temperatura
2.
J Antibiot (Tokyo) ; 72(11): 800-806, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31366953

RESUMO

Coryneazolicin is a plantazolicin family peptide, belonging to linear azole-containing peptides (LAPs). Although coryneazolicin was previously synthesized by in vitro experiments, its biological activity has not been evaluated. In this report, the heterologous production of coryneazolicin was accomplished to obtain enough coryneazolicin for biological activity tests. The structure of coryneazolicin was confirmed by ESI-MS and NMR analyses. The biological activity tests indicated that coryneazolicin possessed potent antibacterial activity and cytotoxicity. Although antibacterial activity of plantazolicin was previously reported, cytotoxicity was newly found in coryneazolicin among plantazolicin type peptides. In addition, we revealed that coryneazolicin induced apoptosis on HCT116 and HOS cancer cell lines.


Assuntos
Escherichia coli/metabolismo , Peptídeos/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA