Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heart Vessels ; 39(5): 464-474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38451262

RESUMO

Resection of the left atrial appendage reportedly improves blood pressure in patients with hypertension. This study aimed to validate the transcriptional profiles of atrial genes responsible for blood pressure regulation in patients with hypertension as well as to identify the molecular mechanisms in rat biological systems. RNA sequencing data of left atrial appendages from patients with (n = 6) and without (n = 6) hypertension were subjected to unsupervised principal component analysis (PCA). Reduction of blood pressure was reflected by third and ninth principal components PC3 and PC9, and that eighteen transcripts, including endothelin-1, were revealed by PCA-based pathway analysis. Resection of the left atrial appendage in hypertensive rats improved their blood pressure accompanied by a decrease in serum endothelin-1 concentration. Expression of the endothelin-1 gene in the atrium and atrial appendectomy could play roles in blood pressure regulation in humans and rats.


Assuntos
Apêndice Atrial , Hipertensão , Humanos , Ratos , Animais , Pressão Sanguínea , Endotelina-1 , Hipertensão/complicações , Átrios do Coração
2.
PLoS One ; 18(2): e0280656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730356

RESUMO

Gemcitabine is an antineoplastic drug commonly used in the treatment of several types of cancers including pancreatic cancer and non-small cell lung cancer. Although gemcitabine-induced cardiotoxicity is widely recognized, the exact mechanism of cardiac dysfunction causing arrhythmias remains unclear. The objective of this study was to electrophysiologically evaluate the proarrhythmic cardiotoxicity of gemcitabine focusing on the human rapid delayed rectifier potassium channel, hERG channel. In heterologous hERG expressing HEK293 cells (hERG-HEK cells), hERG channel current (IhERG) was reduced by gemcitabine when applied for 24 h but not immediately after the application. Gemcitabine modified the activation gating properties of the hERG channel toward the hyperpolarization direction, while inactivation, deactivation or reactivation gating properties were unaffected by gemcitabine. When gemcitabine was applied to hERG-HEK cells in combined with tunicamycin, an inhibitor of N-acetylglucosamine phosphotransferase, gemcitabine was unable to reduce IhERG or shift the activation properties toward the hyperpolarization direction. While a mannosidase I inhibitor kifunensine alone reduced IhERG and the reduction was even larger in combined with gemcitabine, kifunensine was without effect on IhERG when hERG-HEK cells were pretreated with gemcitabine for 24 h. In addition, gemcitabine down-regulated fluorescence intensity for hERG potassium channel protein in rat neonatal cardiomyocyte, although hERG mRNA was unchanged. Our results suggest the possible mechanism of arrhythmias caused by gemcitabine revealing a down-regulation of IhERG through the post-translational glycosylation disruption possibly at the early phase of hERG channel glycosylation in the endoplasmic reticulum that alters the electrical excitability of cells.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Ratos , Gencitabina , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Regulação para Baixo , Cardiotoxicidade/etiologia , Células HEK293 , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/genética , Canais de Potássio de Retificação Tardia/genética , Canais de Potássio de Retificação Tardia/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo
3.
Sci Rep ; 11(1): 11273, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050231

RESUMO

Nitric oxide (NO) is produced from endothelial cells and cardiomyocytes composing the myocardium and benefits cardiac function through both vascular-dependent and-independent effects. This study was purposed to investigate the possible adverse effect of NO focusing on the voltage-gated Na+ channel in cardiomyocytes. We carried out patch-clamp experiments on rat neonatal cardiomyocytes demonstrating that NOC-18, an NO donor, significantly reduced Na+ channel current in a dose-dependent manner by a long-term application for 24 h, accompanied by a reduction of Nav1.5-mRNA and the protein, and an increase of a transcription factor forkhead box protein O1 (FOXO1) in the nucleus. The effect of NOC-18 on the Na+ channel was blocked by an inhibitor of thiol oxidation N-ethylmaleimide, a disulfide reducing agent disulfide 1,4-Dithioerythritol, or a FOXO1 activator paclitaxel, suggesting that NO is a negative regulator of the voltage-gated Na+ channel through thiols in regulatory protein(s) for the channel transcription.


Assuntos
Miócitos Cardíacos/fisiologia , Óxido Nítrico/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Celular/metabolismo , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Óxido Nítrico/fisiologia , Compostos Nitrosos/metabolismo , Compostos Nitrosos/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Transdução de Sinais , Sódio/metabolismo , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos
4.
Heart Vessels ; 36(4): 589-596, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33392644

RESUMO

SCN5A gene encodes the voltage-gated sodium channel NaV1.5 which is composed of a pore-forming α subunit of the channel. Asparagine (N)-linked glycosylation is one of the common post-translational modifications in proteins. The aim of this study was to investigate impact of N-linked glycosylation disruption on the Na+ channel, and the mechanism by which glycosylation regulates the current density and gating properties of the Na+ channel. The NaV1.5-Na+ channel isoform (α submit) derived from human was stably expressed in human embryonic kidney (HEK)-293 cells (Nav1.5-HEK cell). We applied the whole-cell patch-clamp technique to study the impact of N-linked glycosylation disruption in Nav1.5-HEK cell. Inhibition of the N-glycosylation with tunicamycin caused a significant increase of NaV1.5 channel current (INa) when applied for 24 h. Tunicamycin shifted the steady-state inactivation curve to the hyperpolarization direction, whereas the activation curve was unaffected. Recovery from inactivation was prolonged, while the fast phase (τfast) and the slow phase (τslow) of the current decay was unaffected by tunicamycin. INa was unaffected by tunicamycin in the present of a proteasome inhibitor MG132 [N-[(phenylmethoxy)carbonyl]-L-leucy-N-[(1S)-1-formyl-3-methylbutyl]-L-leucinamide], while it was significantly increased by tunicamycin in the presence of a lysosome inhibitor butyl methacrylate (BMA). These findings suggest that N-glycosylation disruption rescues the NaV1.5 channel possibly through the alteration of ubiquitin-proteasome activity, and changes gating properties of the NaV1.5 channel by modulating glycan milieu of the channel protein.


Assuntos
Asparagina/metabolismo , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Glicosilação , Humanos , Modelos Animais , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
5.
Curr Biol ; 30(17): 3378-3396.e7, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32679097

RESUMO

Hypoxia sensors are essential for regulating local oxygen (O2) homeostasis within the body. This is especially pertinent within the CNS, which is particularly vulnerable to O2 deprivation due to high energetic demand. Here, we reveal hypoxia-monitoring function exerted by astrocytes through an O2-regulated protein trafficking mechanism within the CNS. Strikingly, cultured mouse astrocytes isolated from the parafacial respiratory group (pFRG) and retrotrapezoid nucleus (RTN) region are capable of rapidly responding to moderate hypoxia via the sensor cation channel transient receptor potential (TRP) A1 but, unlike multimodal sensory neurons, are inert to hyperoxia and other TRPA1 activators (carbon dioxide, electrophiles, and oxidants) in normoxia. Mechanistically, O2 suppresses TRPA1 channel activity by protein internalization via O2-dependent proline hydroxylation and subsequent ubiquitination by an E3 ubiquitin ligase, NEDD4-1 (neural precursor cell-expressed developmentally down-regulated protein 4). Hypoxia inhibits this process and instantly accumulates TRPA1 proteins at the plasma membrane, inducing TRPA1-mediated Ca2+ influx that triggers ATP release from pFRG/RTN astrocytes, potentiating respiratory center activity. Furthermore, astrocyte-specific Trpa1 disruption in a mouse brainstem-spinal cord preparation impedes the amplitude augmentation of the central autonomic respiratory output during hypoxia. Thus, reversible coupling of the TRPA1 channels with O2-dependent protein translocation allows astrocytes to act as acute hypoxia sensors in the medullary respiratory center.


Assuntos
Astrócitos/patologia , Neurônios Dopaminérgicos/patologia , Endocitose , Hipóxia/fisiopatologia , Oxigênio/metabolismo , Canal de Cátion TRPA1/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Transporte Proteico
6.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 3): 130-137, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32133998

RESUMO

TRPV1, a member of the transient receptor potential (TRP) channels family, has been found to be involved in redox sensing. The crystal structure of the human TRPV1 ankyrin-repeat domain (TRPV1-ARD) was determined at 4.5 Šresolution under nonreducing conditions. This is the first report of the crystal structure of a ligand-free form of TRPV1-ARD and in particular of the human homologue. The structure showed a unique conformation in finger loop 3 near Cys258, which is most likely to be involved in inter-subunit disulfide-bond formation. Also, in human TRPV1-ARD it was possible for solvent to access Cys258. This structural feature might be related to the high sensitivity of human TRPV1 to oxidants. ESI-MS revealed that Cys258 did not form an S-OH functionality even under nonreducing conditions.


Assuntos
Repetição de Anquirina/fisiologia , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética , Anquirinas/química , Anquirinas/genética , Anquirinas/metabolismo , Cristalização/métodos , Humanos , Estrutura Secundária de Proteína , Canais de Cátion TRPV/metabolismo
7.
Insect Biochem Mol Biol ; 118: 103308, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31863874

RESUMO

This study examined diamondback moth (Plutella xylostella) strains showing high-level resistance to cyantraniliprole (KA17 strain) and to flubendiamide and chlorantraniliprole (KU13 strain). The LC50 value of the KA17 strain against cyantraniliprole was ca. 100-fold higher than that of the KU13 strain. The KA17 strain also exhibited high-level resistance to chlorantraniliprole and flubendiamide equivalent to those in the KU13 strain. The KU13 strain showed a higher LC50 value against cyantraniliprole than the susceptible strains. However, the LC50 value of the KU13 strain against cyantraniliprole was below the agriculturally recommended concentration. Subsequent QTL analysis using ddRAD-seq identified the resistance responsible regions of the KA17 and KU13 strains with different diamide resistance profiles. Ryanodine receptor (RyR) gene was included in the identified regions. Single nucleotide polymorphism calling in the RyR gene using RNA-seq found previously reported G4946E (amino acid mutation from glycine to glutamic acid at amino acid position 4946) and novel I4790K (amino acid mutation from isoleucine to lysine at amino acid position 4790) mutations, respectively, in the RyR of the KU13 and KA17 strains. Functional significance of I4790K in the resistance was confirmed in calcium imaging of the human embryonic kidney 293T cell line expressing Bombyx mori RyR with the mutation. This reporting is the first describing I4790K as a fundamental mechanism responsible for the resistance to the diamides including cyantraniliprole. From this study, we also report up-regulated expression of some degradation enzymes and that of the RyR gene in the KA17 and KU13 strains based on results of RNA-seq data analysis.


Assuntos
Diamida/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mariposas/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
8.
J Physiol Sci ; 69(2): 335-343, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30600443

RESUMO

T-type channels are low-voltage-activated channels that play a role in the cardiovascular system particularly for pacemaker activity. Glycosylation is one of the most prevalent post-translational modifications in protein. Among various glycosylation types, the most common one is asparagine-linked (N-linked) glycosylation. The aim of this study was to elucidate the roles of N-linked glycosylation for the gating properties of the CaV3.1-T-type Ca2+ channel. N-linked glycosylation synthesis inhibitor tunicamycin causes a reduction of CaV3.1-T-type Ca2+ channel current (CaV3.1-ICa.T) when applied for 12 h or longer. Tunicamycin (24 h) significantly shifted the activation curve to the depolarization potentials, whereas the steady-state inactivation curve was unaffected. Use-dependent inactivation of CaV3.1-ICa.T was accelerated, and recovery from inactivation was prolonged by tunicamycin (24 h). CaV3.1-ICa.T was insensitive to a glycosidase PNGase F when the channels were expressed on the plasma membrane. These findings suggest that N-glycosylation contributes not only to the cell surface expression of the CaV3.1-T-type Ca2+ channel but to the regulation of the gating properties of the channel when the channel proteins were processed during the folding and trafficking steps in the cell.


Assuntos
Asparagina/metabolismo , Canais de Cálcio Tipo T/metabolismo , Ativação do Canal Iônico/fisiologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Glicosilação/efeitos dos fármacos , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Tunicamicina/farmacologia
9.
Channels (Austin) ; 13(1): 1-16, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424709

RESUMO

Activation of the atrial natriuretic signaling pathway is intrinsic to the pathological responses associated with a range of cardiovascular diseases that stress the heart, especially those involved in sustained cardiac pressure overload which induces hypertrophy and the pathological remodeling that frequently leads to heart failure. We identify transient receptor potential cation channel, subfamily V, member 1, as a regulated molecular component, and therapeutic target of this signaling system. Data show that TRPV1 is a physical component of the natriuretic peptide A, cGMP, PKG signaling complex, interacting with the Natriuretic Peptide Receptor 1 (NPR1), and upon binding its ligand, Natriuretic Peptide A (NPPA, ANP) TRPV1 activation is subsequently suppressed through production of cGMP and PKG mediated phosphorylation of the TRPV1 channel. Further, inhibition of TRPV1, with orally delivered drugs, suppresses chamber and myocyte hypertrophy, and can longitudinally improve in vivo heart function in mice exposed to chronic pressure overload induced by transverse aortic constriction, reversing pre-established hypertrophy induced by pressure load while restoring chamber function. TRPV1 is a physical and regulated component of the natriuretic peptide signaling system, and TRPV1 inhibition may provide a new treatment strategy for treating, and reversing the loss of function associated with cardiac hypertrophy and heart failure.


Assuntos
Acrilamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cardiomegalia/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Citrato de Sildenafila/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Acrilamidas/administração & dosagem , Administração Oral , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células HEK293 , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Citrato de Sildenafila/administração & dosagem , Canais de Cátion TRPV/metabolismo
10.
Angew Chem Int Ed Engl ; 57(10): 2586-2591, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29341462

RESUMO

In native systems, scaffolding proteins play important roles in assembling proteins into complexes to transduce signals. This concept is yet to be applied to the assembly of functional transmembrane protein complexes in artificial systems. To address this issue, DNA origami has the potential to serve as scaffolds that arrange proteins at specific positions in complexes. Herein, we report that Kir3 K+ channel proteins are assembled through zinc-finger protein (ZFP)-adaptors at specific locations on DNA origami scaffolds. Specific binding of the ZFP-fused Kir3 channels and ZFP-based adaptors on DNA origami were confirmed by atomic force microscopy and gel electrophoresis. Furthermore, the DNA origami with ZFP binding sites nearly tripled the K+ channel current activity elicited by heterotetrameric Kir3 channels in HEK293T cells. Thus, our method provides a useful template to control the oligomerization states of membrane protein complexes in vitro and in living cells.

11.
Sci Rep ; 7(1): 9760, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852171

RESUMO

Numerical model-based simulations provide important insights into ion channel gating when experimental limitations exist. Here, a novel strategy combining numerical simulations with patch clamp experiments was used to investigate the net positive charges in the putative transmembrane segment 4 (S4) of the atypical, positively-shifted voltage-dependence of polycystic kidney disease 2-like 1 (PKD2L1) channel. Charge-neutralising mutations (K452Q, K455Q and K461Q) in S4 reduced gating charges, positively shifted the Boltzmann-type activation curve [i.e., open probability (P open)-V curve] and altered the time-courses of activation/deactivation of PKD2L1, indicating that this region constitutes part of a voltage sensor. Numerical reconstruction of wild-type (WT) and mutant PKD2L1-mediated currents necessitated, besides their voltage-dependent gating parameters, a scaling factor that describes the voltage-dependence of maximal conductance, G max. Subsequent single-channel conductance (γ) measurements revealed that voltage-dependence of G max in WT can be explained by the inward-rectifying property of γ, which is greatly changed in PKD2L1 mutants. Homology modelling based on PKD2 and NaVAb structures suggest that such voltage dependence of P open and γ in PKD2L1 could both reflect the charged state of the S4 domain. The present conjunctive experimental and theoretical approaches provide a framework to explore the undetermined mechanism(s) regulating TRP channels that possess non-classical voltage-dependent properties.


Assuntos
Aminoácidos/metabolismo , Canais de Cálcio/metabolismo , Receptores de Superfície Celular/metabolismo , Substituição de Aminoácidos , Aminoácidos/química , Canais de Cálcio/química , Canais de Cálcio/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Técnicas de Patch-Clamp , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
12.
Proc Jpn Acad Ser B Phys Biol Sci ; 93(7): 464-482, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769017

RESUMO

Transient Receptor Potential (TRP) proteins form cation channels characterized by a wide variety of activation triggers. Here, we overview a group of TRP channels that respond to reactive redox species to transduce physiological signals, with a focus on TRPA1 and its role in oxygen physiology. Our systematic evaluation of oxidation sensitivity using cysteine-selective reactive disulphides with different redox potentials reveals that TRPA1 has the highest sensitivity to oxidants/electrophiles among the TRP channels, which enables it to sense O2. Proline hydroxylation by O2-dependent hydroxylases also regulates the O2-sensing function by inhibiting TRPA1 in normoxia; TRPA1 is activated by hypoxia through relief from the inhibition and by hyperoxia through cysteine oxidation that overrides the inhibition. TRPA1 enhances neuronal discharges induced by hyperoxia and hypoxia in the vagus to underlie respiratory adaptation to changes in O2 availability. This importance of TRPA1 in non-carotid body O2 sensors can be extended to the universal significance of redox-sensitive TRP channels in O2 adaptation.


Assuntos
Oxigênio/metabolismo , Canal de Cátion TRPA1/metabolismo , Sequência de Aminoácidos , Animais , Evolução Molecular , Humanos , Hipóxia/metabolismo , Canal de Cátion TRPA1/química
13.
J Biol Chem ; 292(22): 9365-9381, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28377503

RESUMO

Voltage-dependent Ca2+ channels (VDCCs) mediate neurotransmitter release controlled by presynaptic proteins such as the scaffolding proteins Rab3-interacting molecules (RIMs). RIMs confer sustained activity and anchoring of synaptic vesicles to the VDCCs. Multiple sites on the VDCC α1 and ß subunits have been reported to mediate the RIMs-VDCC interaction, but their significance is unclear. Because alternative splicing of exons 44 and 47 in the P/Q-type VDCC α1 subunit CaV2.1 gene generates major variants of the CaV2.1 C-terminal region, known for associating with presynaptic proteins, we focused here on the protein regions encoded by these two exons. Co-immunoprecipitation experiments indicated that the C-terminal domain (CTD) encoded by CaV2.1 exons 40-47 interacts with the α-RIMs, RIM1α and RIM2α, and this interaction was abolished by alternative splicing that deletes the protein regions encoded by exons 44 and 47. Electrophysiological characterization of VDCC currents revealed that the suppressive effect of RIM2α on voltage-dependent inactivation (VDI) was stronger than that of RIM1α for the CaV2.1 variant containing the region encoded by exons 44 and 47. Importantly, in the CaV2.1 variant in which exons 44 and 47 were deleted, strong RIM2α-mediated VDI suppression was attenuated to a level comparable with that of RIM1α-mediated VDI suppression, which was unaffected by the exclusion of exons 44 and 47. Studies of deletion mutants of the exon 47 region identified 17 amino acid residues on the C-terminal side of a polyglutamine stretch as being essential for the potentiated VDI suppression characteristic of RIM2α. These results suggest that the interactions of the CaV2.1 CTD with RIMs enable CaV2.1 proteins to distinguish α-RIM isoforms in VDI suppression of P/Q-type VDCC currents.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio Tipo N/genética , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Domínios Proteicos
14.
Biochim Biophys Acta ; 1858(12): 2972-2983, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27637155

RESUMO

The voltage-gated proton channel, Hv1, is expressed in blood cells, airway epithelium, sperm and microglia, playing important roles in diverse biological contexts including phagocytosis or sperm maturation through its regulation of membrane potential and pH. The gene encoding Hv1, HVCN1, is widely found across many species and is also conserved in unicellular organisms such as algae or dinoflagellates where Hv1 plays role in calcification or bioluminescence. Voltage-gated proton channels exhibit a large variation of activation rate among different species. Here we identify an Hv1 ortholog from sea urchin, Strongylocentrotus purpuratus, SpHv1. SpHv1 retains most of key properties of Hv1 but exhibits 20-60 times more rapid activation kinetics than mammalian orthologs upon heterologous expression in HEK293T cells. Comparison between SpHv1 and mHv1 highlights novel roles of the third transmembrane segment S3 in activation gating of Hv1.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/fisiologia , Ouriços-do-Mar/metabolismo , Animais , Células HEK293 , Humanos , Canais Iônicos/química , Camundongos
15.
Cell Calcium ; 60(2): 115-22, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26969190

RESUMO

Cellular redox status is maintained by the balance between series of antioxidant systems and production of reactive oxygen/nitrogenous species. Cells utilize this redox balance to mediate diverse physiological functions. Transient receptor potential (TRP) channels are non-selective cation channels that act as biosensors for environmental and noxious stimuli, such as capsaicin and allicin, as well as changes in temperature and conditions inside the cell. TRP channels also have an emerging role as essential players in detecting cellular redox status to regulate cellular signals mediating physiological phenomena. Reactive species activate TRP channels either directly through oxidative amino acid modifications or indirectly through second messengers. For instance, TRPA1, TRPV1 and TRPC5 channels are directly activated by oxidizing agents through cysteine modification; whereas, TRPM2 channel is indirectly activated by production of ADP-ribose. One intriguing property of several TRP channels is susceptibility to both oxidizing and reducing stimuli, suggesting TRP channels could potentially act as a bidirectional sensor for detecting deviations in redox status. In this review, we discuss the unique chemical physiologies of redox sensitive TRP channels and their physiological significance in Ca(2+) signaling.


Assuntos
Transdução de Sinais , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Doença , Humanos , Ativação do Canal Iônico , Modelos Biológicos , Oxirredução
16.
J Biol Chem ; 291(8): 4197-210, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26702055

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) channel is a tetrameric protein that acts as a sensor for noxious stimuli such as heat and for diverse inflammatory mediators such as oxidative stress to mediate nociception in a subset of sensory neurons. In TRPV1 oxidation sensing, cysteine (Cys) oxidation has been considered as the principle mechanism; however, its biochemical basis remains elusive. Here, we characterize the oxidative status of Cys residues in differential redox environments and propose a model of TRPV1 activation by oxidation. Through employing a combination of non-reducing SDS-PAGE, electrophysiology, and mass spectrometry we have identified the formation of subunit dimers carrying a stable intersubunit disulfide bond between Cys-258 and Cys-742 of human TRPV1 (hTRPV1). C258S and C742S hTRPV1 mutants have a decreased protein half-life, reflecting the role of the intersubunit disulfide bond in supporting channel stability. Interestingly, the C258S hTRPV1 mutant shows an abolished response to oxidants. Mass spectrometric analysis of Cys residues of hTRPV1 treated with hydrogen peroxide shows that Cys-258 is highly sensitive to oxidation. Our results suggest that Cys-258 residues are heterogeneously modified in the hTRPV1 tetrameric complex and comprise Cys-258 with free thiol for oxidation sensing and Cys-258, which is involved in the disulfide bond for assisting subunit dimerization. Thus, the hTRPV1 channel has a heterogeneous subunit composition in terms of both redox status and function.


Assuntos
Peróxido de Hidrogênio/química , Mutação de Sentido Incorreto , Multimerização Proteica , Canais de Cátion TRPV/química , Substituição de Aminoácidos , Animais , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Células HEK293 , Humanos , Oxirredução , Processamento de Proteína Pós-Traducional , Ratos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
17.
Pflugers Arch ; 468(1): 85-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26149285

RESUMO

Regulation of ion channels is central to the mechanisms that underlie immediate acute physiological responses to changes in the availability of molecular oxygen (O2). A group of cation-permeable channels that are formed by transient receptor potential (TRP) proteins have been characterized as exquisite sensors of redox reactive species and as efficient actuators of electric/ionic signals in vivo. In this review, we first discuss how redox-sensitive TRP channels such as TRPA1 have recently emerged as sensors of the relatively inert oxidant O2. With regard to the physiological significance of O2 sensor TRP channels, vagal TRPA1 channels are mainly discussed with respect to their role in respiratory regulation in comparison with canonical pathways in glomus cells of the carotid body, which is a well-established O2-sensing organ. TRPM7 channels are discussed regarding hypoxia-sensing function in ischemic cell death. Also, ubiquitous expression of TRPA1 and TRPM7 together with their physiological relevance in the body is examined. Finally, based upon these studies on TRP channels, we propose a hypothesis of "O2 remodeling." The hypothesis is that cells detect deviation of O2 availability from appropriate levels via sensors and adjust local O2 environments in vivo by controlling supply and consumption of O2 via pathways comprising cellular signals and transcription factors downstream of sensors, which consequently optimize physiological functions. This new insight into O2 adaptation through ion channels, particularly TRPs, may foster a paradigm shift in our understanding in the biological significance of O2.


Assuntos
Adaptação Fisiológica , Corpo Carotídeo/metabolismo , Oxigênio/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Humanos , Oxirredução , Canais de Cátion TRPC/genética
18.
J Am Chem Soc ; 137(50): 15859-64, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26630251

RESUMO

TRPA1 is a member of the transient receptor potential (TRP) cation channel family that is expressed primarily on sensory neurons. This chemosensor is activated through covalent modification of multiple cysteine residues with a wide range of reactive compounds including allyl isothiocyanate (AITC), a spicy component of wasabi. The present study reports on potent and selective agonists of TRPA1, discovered through screening 1657 electrophilic molecules. In an effort to validate the mode of action of hit molecules, we noted a new TRPA1-selective agonist, JT010 (molecule 1), which opens the TRPA1 channel by covalently and site-selectively binding to Cys621 (EC50 = 0.65 nM). The results suggest that a single modification of Cys621 is sufficient to open the TRPA1 channel. The TRPA1-selective probe described herein might be useful for further mechanistic studies of TRPA1 activation.


Assuntos
Proteínas do Tecido Nervoso/agonistas , Canais de Potencial de Receptor Transitório/agonistas , Canais de Cálcio , Células HEK293 , Humanos , Canal de Cátion TRPA1
19.
Front Pharmacol ; 6: 22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25717302

RESUMO

Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable, nonselective cation channels that carry receptor-operated Ca(2+) currents (ROCs) triggered by receptor-induced, phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Within the vasculature, TRPC channel ROCs contribute to smooth muscle cell depolarization, vasoconstriction, and vascular remodeling. However, TRPC channel ROCs exhibit a variable response to receptor-stimulation, and the regulatory mechanisms governing TRPC channel activity remain obscure. The variability of ROCs may be explained by their complex regulation by PI(4,5)P2 and its metabolites, which differentially affect TRPC channel activity. To resolve the complex regulation of ROCs, the use of voltage-sensing phosphoinositide phosphatases and model simulation have helped to reveal the time-dependent contribution of PI(4,5)P2 and the possible role of PI(4,5)P2 in the regulation of ROCs. These approaches may provide unprecedented insight into the dynamics of PI(4,5)P2 regulation of TRPC channels and the fundamental mechanisms underlying transmembrane ion flow. Within that context, we summarize the regulation of TRPC channels and their coupling to receptor-mediated signaling, as well as the application of voltage-sensing phosphoinositide phosphatases to this research. We also discuss the controversial bidirectional effects of PI(4,5)P2 using a model simulation that could explain the complicated effects of PI(4,5)P2 on different ROCs.

20.
Nat Struct Mol Biol ; 21(4): 352-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24584463

RESUMO

The voltage-gated proton channel Hv1 (or VSOP) has a voltage-sensor domain (VSD) with dual roles of voltage sensing and proton permeation. Its gating is sensitive to pH and Zn(2+). Here we present a crystal structure of mouse Hv1 in the resting state at 3.45-Å resolution. The structure showed a 'closed umbrella' shape with a long helix consisting of the cytoplasmic coiled coil and the voltage-sensing helix, S4, and featured a wide inner-accessible vestibule. Two out of three arginines in S4 were located below the phenylalanine constituting the gating charge-transfer center. The extracellular region of each protomer coordinated a Zn(2+), thus suggesting that Zn(2+) stabilizes the resting state of Hv1 by competing for acidic residues that otherwise form salt bridges with voltage-sensing positive charges on S4. These findings provide a platform for understanding the general principles of voltage sensing and proton permeation.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/química , Animais , Cristalografia por Raios X , Dimerização , Zíper de Leucina , Camundongos , Modelos Moleculares , Estrutura Terciária de Proteína , Prótons , Saccharomyces cerevisiae/genética , Termodinâmica , Raios X , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA