Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30427, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694029

RESUMO

Maladaptive avoidance behaviour is often observed in patients suffering from anxiety and trauma- and stressor-related disorders. The prefrontal-amygdala-hippocampus network is implicated in learning and memory consolidation. Neuroinflammation in this circuitry alters network dynamics, resulting in maladaptive avoidance behaviour. The two-way active avoidance test is a well-established translational model for assessing avoidance responses to stressful situations. While some animals learn the task and show adaptive avoidance (AA), others show strong fear responses to the test environment and maladaptive avoidance (MA). Here, we investigated if a distinct neuroinflammation pattern in the prefrontal-amygdala-hippocampus network underlies the behavioural difference observed in these animals. Wistar rats were tested 8 times and categorized as AA or MA based on behaviour. Brain recovery followed for the analysis of neuroinflammatory markers in this network. AA and MA presented distinct patterns of neuroinflammation, with MA showing increased astrocyte, EAAT-2, IL-1ß, IL-17 and TNF-ɑ in the amygdala. This neuroinflammatory pattern may underlie these animals' fear response and maladaptive avoidance. Further studies are warranted to determine the specific contributions of each inflammatory factor, as well as the possibility of treating maladaptive avoidance behaviour in patients with psychiatric disorders with anti-inflammatory drugs targeting the amygdala.

2.
Sci Rep ; 13(1): 4591, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944694

RESUMO

Breast cancer is the second most common diagnosed type of cancer in women. Chronic neuropathic pain after mastectomy occurs frequently and is a serious health problem. In our previous single-center, prospective, randomized controlled clinical study, we demonstrated that the combination of serratus anterior plane block (SAM) and pectoral nerve block type I (PECS I) with general anesthesia reduced acute postoperative pain. The present report describes a prospective follow-up study of this published study to investigate the development of chronic neuropathic pain 12 months after mastectomy by comparing the use of general anesthesia alone and general anesthesia with SAM + PECS I. Additionally, the use of analgesic medication, quality of life, depressive symptoms, and possible correlations between plasma levels of interleukin (IL)-1 beta, IL-6, and IL-10 collected before and 24 h after surgery as predictors of pain and depression were evaluated. The results showed that the use of SAM + PECS I with general anesthesia reduced numbness, hypoesthesia to touch, the incidence of patients with chronic pain in other body regions and depressive symptoms, however, did not significantly reduce the incidence of chronic neuropathic pain after mastectomy. Additionally, there was no difference in the consumption of analgesic medication and quality of life. Furthermore, no correlation was observed between IL-1 beta, IL-6, and IL-10 levels and pain and depression. The combination of general anesthesia with SAM + PECS I reduced the occurrence of specific neuropathic pain descriptors and depressive symptoms. These results could promote the use of SAM + PECS I blocks for the prevention of specific neuropathic pain symptoms after mastectomy.Registration of clinical trial: The Research Ethics Board of the Hospital Sirio-Libanes/Brazil approved the study (CAAE 48721715.0.0000.5461). This study is registered at Registro Brasileiro de Ensaios Clinicos (ReBEC), and ClinicalTrials.gov, Identifier: NCT02647385.


Assuntos
Neoplasias da Mama , Neuralgia , Nervos Torácicos , Feminino , Humanos , Mastectomia/efeitos adversos , Neoplasias da Mama/cirurgia , Neoplasias da Mama/complicações , Seguimentos , Interleucina-10 , Estudos Prospectivos , Qualidade de Vida , Interleucina-6/uso terapêutico , Dor Pós-Operatória/tratamento farmacológico , Neuralgia/complicações , Músculos
3.
Acupunct Med ; 40(2): 169-177, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34758667

RESUMO

BACKGROUND: Neuropathic pain (NP) is a complex disease that remains challenging to treat. Low-frequency dense-and-disperse (DD) electroacupuncture (EA) has been used as adjuvant therapy for neuropathic pain; however, its analgesic effect decreases as stimulation time increases, or when it is repeatedly used. We hypothesized that a new frequency parameter could improve the effectiveness of EA, and aimed to compare the efficacy and duration of the analgesic effect between classic DD-EA and non-repetitive and non-sequential frequency (random frequency (RF)-EA) in neuropathic rats. Furthermore, the effect of RF-EA at local traditional acupuncture point locations versus auricular vagus nerve stimulation (aVNS) was evaluated. METHODS: Male Wistar rats with peripheral neuropathy were subjected to a single session of DD-EA or RF-EA for 20 or 40 min at ST36 + GB34. An additional group of rats was treated with RF-EA for 20 min using aVNS at the appropriate ear point locations. Paw pressure test, von Frey filaments and spontaneous pain scores were evaluated. Sham-operated rats were used as controls. RESULTS: In all, 20 min of RF-EA reversed hyperalgesia (for 24 h) and allodynia (for 8 h), showing a longer analgesic effect than DD-EA. Both RF-EA and DD-EA induced partial inhibition of spontaneous pain for 8 h. Forty minutes of DD-EA did not interfere with the NP phenomena; however, RF-EA induced significant long-term analgesia. aVNS induced an analgesic effect similar to local stimulation. CONCLUSION: This pilot study shows that RF-EA at both local traditional acupuncture point and auriculotherapy point locations induces long-lasting analgesia in neuropathic rats, and more effectively so than classical DD-EA.


Assuntos
Eletroacupuntura , Neuralgia , Animais , Masculino , Neuralgia/terapia , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Roedores
4.
Neurobiol Stress ; 12: 100219, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32435668

RESUMO

Avoidance behavior is a hallmark in pathological anxiety disorders and results in impairment of daily activities. Individual differences in avoidance responses are critical in determining vulnerability or resistance to anxiety disorders. Dopaminergic activation is implicated in the processing of avoidance responses; however, the mechanisms underlying these responses are unknown. In this sense, we used a preclinical model of avoidance behavior to investigate the possibility of an intrinsic differential dopaminergic pattern between good and poor performers. The specific goal was to assess the participation of dopamine (DA) through pharmacological manipulation, and we further evaluated the effects of systemic injections of the dopaminergic receptor type 1 (D1 antagonist - SCH23390) and dopaminergic receptor type 2 (D2 antagonist - sulpiride) antagonists in the good performers. Additionally, we evaluated the effects of intra-amygdala microinjection of a D1 antagonist (SCH23390) and a D2 antagonist (sulpiride) in good performers as well as intra-amygdala microinjection of a D1 agonist (SKF38393) and D2 agonist (quinpirole) in poor performers. Furthermore, we quantified the contents of dopamine and metabolites (3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)) in the amygdala, evaluated the basal levels of tyrosine hydroxylase expression (catecholamine synthesis enzyme) and measured the volume of the substantia nigra, ventral tegmental area and locus coeruleus. Our results showed that it could be possible to convert animals from good to poor performers, and vice versa, by intra-amygdala (basolateral and central nucleus) injections of D1 receptor antagonists in good performers or D2 receptor agonists in poor performers. Additionally, the good performers had lower levels of DOPAC and HVA in the amygdala, an increase in the total volume of the amygdala (AMG), substantia nigra (SN), ventral tegmental area (VTA) and locus coeruleus (LC), and an increase in the number of tyrosine hydroxylase-positive cells in SN, VTA and LC, which positively correlates with the avoidance behavior. Taken together, our data show evidence for a dopaminergic signature of avoidance performers, emphasizing the role of distinct dopaminergic receptors in individual differences in avoidance behavior based on pharmacological, immunohistochemical, neurochemical and volumetric analyses. Our findings provide a better understanding of the role of the dopaminergic system in the execution of avoidance behavior.

5.
J Vis Exp ; (156)2020 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-32090991

RESUMO

Tumor-draining lymph nodes (LNs) are not merely filters of tumor-produced waste. They are one of the most common regional sites of provisional residence of disseminated tumor cells in patients with different types of cancer. The detection of these LN-residing tumor cells is an important biomarker associated with poor prognosis and adjuvant therapy decisions. Recent mouse models have indicated that LN-residing tumor cells could be a substantial source of malignant cells for distant metastases. The ability to quantify the adhesivity of tumor cells to LN parenchyma is a critical gauge in experimental research that focuses on the identification of genes or signaling pathways relevant for lymphatic/metastatic dissemination. Because LNs are complex 3D structures with a variety of appearances and compositions in tissue sections depending on the plane of section, their matrices are difficult to replicate experimentally in vitro in a fully controlled way. Here, we describe a simple and inexpensive method that allows the quantification of adhesive tumor cells to LN cryosections. Using serial sections of the same LN, we adapt the classic method developed by Brodt to use nonradioactive labels and directly count the number of adhering tumor cells per LN surface area. LN-adherent tumor cells are readily identified by light microscopy and confirmed by a fluorescence-based method, giving an adhesion index that reveals the cell-binding affinity to LN parenchyma, which is suggestive evidence of molecular alterations in the affinity binding of integrins to their correlate LN-ligands.


Assuntos
Adesão Celular , Contagem de Células/métodos , Linfonodos/patologia , Metástase Linfática/patologia , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Experimentais/patologia , Ratos Wistar
6.
Cell Mol Neurobiol ; 40(6): 939-954, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31939008

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapeutic strategy for motor symptoms of Parkinson's disease (PD) when L-DOPA therapy induces disabling side effects. Classical inflammatory activation of glial cells is well established in PD, contributing to the progressive neurodegenerative state; however, the role of DBS in regulating the inflammatory response remains largely unknown. To understand the involvement of astrocytes in the mechanisms of action of DBS, we evaluated the effect of STN-DBS in regulating motor symptoms, astrocyte reactivity, and cytokine expression in a 6-OHDA-induced PD rat model. To mimic in vivo DBS, we investigate the effect of high-frequency stimulation (HFS) in cultured astrocytes regulating cytokine induction and NF-κB activation. We found that STN-DBS improved motor impairment, induced astrocytic hyperplasia, and reversed increased IFN-γ and IL-10 levels in the globus pallidus (GP) of lesioned rats. Moreover, HFS activated astrocytes and prevented TNF-α-induced increase of monocyte chemoattractant protein-1 (MCP-1) and NF-κB activation in vitro. Our results indicate that DBS/HFS may act as a regulator of the inflammatory response in PD states, attenuating classical activation of astrocytes and cytokine induction, potentially through its ability to regulate NF-κB activation. These findings may help us understand the role of astrocyte signaling in HFS, highlighting its possible relationship with the effectiveness of DBS in neurodegenerative disorders.


Assuntos
Astrócitos/patologia , Estimulação Encefálica Profunda , Doença de Parkinson/patologia , Núcleo Subtalâmico/patologia , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Globo Pálido/patologia , Hiperplasia , Inflamação/patologia , Masculino , Camundongos , Atividade Motora , NF-kappa B/metabolismo , Ratos Wistar , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
7.
Sci Rep ; 8(1): 13608, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206257

RESUMO

The amygdala is an important component of the limbic system that participates in the control of the pain response and modulates the affective-motivational aspect of pain. Neuropathic pain is a serious public health problem and has a strong affective-motivational component that makes it difficult to treat. The central (CeA), basolateral (BLA) and lateral (LA) nuclei of the amygdala are involved in the processing and regulation of chronic pain. However, the roles of these nuclei in the maintenance of neuropathic pain, anxiety and depression remain unclear. Thus, the main objective of this study was to investigate the role of amygdala subnuclei in the modulation of neuropathic pain, including the affective-motivational axis, in an experimental model of peripheral neuropathy. The specific goals were as follows: (1) To evaluate the nociceptive responses and the patterns of activation of the CeA, BLA and LA in neuropathic rats; and (2) To evaluate the effect of inactivating the amygdala nuclei on the nociceptive response, anxiety and depressive behaviors, motor activity, and plasma stress hormones in animals with neuropathic pain. Thus, mechanical hyperalgesia and allodynia, and the pattern of c-Fos staining in the amygdala subnuclei were evaluated in rats with chronic constriction of the sciatic nerve, as well as sham-operated and naïve rats. Once the amygdala subnuclei involved in neuropathic pain response were defined, those subnuclei were pharmacological inactivated. The effect of muscimol inactivation on the nociceptive response (hyperalgesia and allodynia), anxiety (elevated plus-maze), depressive-like behavior (forced swim test), motor activity (open field), and plasma stress hormone levels (corticosterone and adrenocorticotropic hormone) were evaluated in sham-operated and neuropathic animals. The results showed that the anterior and posterior portions of the BLA and the central portion of the CeA are involved in controlling neuropathic pain. The inactivation of these nuclei reversed hyperalgesia, allodynia and depressive-like behavior in animals with peripheral neuropathy. Taken together, our findings improve our understanding of the neurocircuitry involved in persistent pain and the roles of specific amygdala subnuclei in the modulation of neuropathic pain, including the neurocircuitry that processes the affective-motivational component of pain.


Assuntos
Dor Crônica/tratamento farmacológico , Neuralgia/tratamento farmacológico , Dor Nociceptiva/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Hormônio Adrenocorticotrópico/sangue , Animais , Ansiedade/sangue , Ansiedade/tratamento farmacológico , Ansiedade/fisiopatologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Núcleo Central da Amígdala/efeitos dos fármacos , Núcleo Central da Amígdala/fisiopatologia , Dor Crônica/fisiopatologia , Corticosterona/sangue , Depressão/sangue , Depressão/tratamento farmacológico , Depressão/fisiopatologia , Humanos , Hiperalgesia/sangue , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Muscimol/administração & dosagem , Neuralgia/sangue , Neuralgia/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Dor Nociceptiva/sangue , Dor Nociceptiva/fisiopatologia , Medição da Dor , Limiar da Dor , Doenças do Sistema Nervoso Periférico/sangue , Doenças do Sistema Nervoso Periférico/fisiopatologia , Ratos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/fisiopatologia
8.
Sci Rep ; 8(1): 7815, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29777144

RESUMO

Surgery is the first-line treatment for early, localized, or operable breast cancer. Regional anesthesia during mastectomy may offer the prevention of postoperative pain. One potential protocol is the combination of serratus anterior plane block (SAM block) with pectoral nerve block I (PECS I), but the results and potential benefits are limited. Our study compared general anesthesia with or without SAM block + PECS I during radical mastectomy with axillary node dissection and breast reconstruction using evaluations of pain, opioid consumption, side effects and serum levels of interleukin (IL)-1beta, IL-6 and IL-10. This is a prospective, randomized controlled trial. Fifty patients were randomized to general anesthesia only or general anesthesia associated with SAM block + PECS I (25 per group). The association of SAM block + PECS I with general anesthesia reduced intraoperative fentanyl consumption, morphine use and visual analog pain scale scores in the post-anesthetic care unit (PACU) and at 24 h after surgery. In addition, the anesthetic protocol decreased side effects and sedation 24 h after surgery compared to patients who underwent general anesthesia only. IL-6 levels increased after the surgery compared to baseline levels in both groups, and no differences in IL-10 and IL-1 beta levels were observed. Our protocol improved the outcomes of mastectomy, which highlight the importance of improving mastectomy protocols and focusing on the benefits of regional anesthesia.


Assuntos
Anestesia Geral/métodos , Neoplasias da Mama/cirurgia , Mamoplastia/métodos , Mastectomia Radical Modificada/métodos , Bloqueio Nervoso/métodos , Dor Pós-Operatória/prevenção & controle , Adulto , Idoso , Analgésicos Opioides/uso terapêutico , Neoplasias da Mama/sangue , Feminino , Humanos , Interleucina-10 , Interleucina-1beta/sangue , Interleucina-6/sangue , Pessoa de Meia-Idade , Medição da Dor/efeitos dos fármacos , Estudos Prospectivos , Resultado do Tratamento
9.
Front Behav Neurosci ; 10: 162, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27605910

RESUMO

The avoidance response is present in pathological anxiety and interferes with normal daily functions. The aim of this article is to shed light on performance markers of active avoidance (AA) using two different rat strains, Sprague-Dawley (SD) and Wistar. Specifically, good and poor performers were evaluated regarding anxiety traits exhibited in the elevated plus maze (EPM) and corticosterone levels and motor activity in the open field test. In addition, the plasma levels of Interleukin-6 (IL-6), Interleukin-1Beta (IL-1beta), Nerve Growth Factor Beta (NGF-beta), Tumor Necrosis Factor-Alpha (TNF-alpha) and cytokine-induced neutrophil chemoattractant 1 (CINC-1) were compared in the good and poor performers to better understand the role of the immunologic system in aversive learning. Behavioral criteria were employed to identify subpopulations of SD and Wistar rats based on their behavioral scores during a two-way AA test. The animals were tested for anxiety-like behavior in the EPM and motor activity in the open-field test. Plasma corticosterone levels were measured at the end of the avoidance test. Cytokine levels of IL-6, IL-1beta, NGF-beta, TNF-alpha, and CINC-1 were measured in the plasma of the Wistar rats. Sixty-six percent of the Wistar rats and 35% of the SD rats exhibited a poor performance. This feature was associated with a decrease in anxiety-like behavior in the EPM. The poor and good performers exhibited lower levels of corticosterone compared with the control animals, which suggests that training alters corticosterone levels, thereby leading to hypocortisolism, independent of the performance. The CINC-1 levels were increased in the poor performers, which reinforces the role of immunologic system activation in learning deficits. Our study provides a better understanding of the complex interactions that underlie neuroimmune consequences and their implications for performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA