Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 21(1): 40, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32079535

RESUMO

Following publication of the original paper [1], it was reported that an error in the processing of Fig. 8 occurred. In the online HTML version of the article, Fig. 8 was presented as a duplication of Fig. 7. The original article [1] has been corrected.

2.
Genome Biol ; 21(1): 23, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014020

RESUMO

BACKGROUND: Host-associated microbiomes, the microorganisms occurring inside and on host surfaces, influence evolutionary, immunological, and ecological processes. Interactions between host and microbiome affect metabolism and contribute to host adaptation to changing environments. Meta-analyses of host-associated bacterial communities have the potential to elucidate global-scale patterns of microbial community structure and function. It is possible that host surface-associated (external) microbiomes respond more strongly to variations in environmental factors, whereas internal microbiomes are more tightly linked to host factors. RESULTS: Here, we use the dataset from the Earth Microbiome Project and accumulate data from 50 additional studies totaling 654 host species and over 15,000 samples to examine global-scale patterns of bacterial diversity and function. We analyze microbiomes from non-captive hosts sampled from natural habitats and find patterns with bioclimate and geophysical factors, as well as land use, host phylogeny, and trophic level/diet. Specifically, external microbiomes are best explained by variations in mean daily temperature range and precipitation seasonality. In contrast, internal microbiomes are best explained by host factors such as phylogeny/immune complexity and trophic level/diet, plus climate. CONCLUSIONS: Internal microbiomes are predominantly associated with top-down effects, while climatic factors are stronger determinants of microbiomes on host external surfaces. Host immunity may act on microbiome diversity through top-down regulation analogous to predators in non-microbial ecosystems. Noting gaps in geographic and host sampling, this combined dataset represents a global baseline available for interrogation by future microbial ecology studies.


Assuntos
Clima , Interações Hospedeiro-Patógeno/imunologia , Microbiota , Adaptação Fisiológica , Animais , Humanos
3.
Arch Biochem Biophys ; 526(2): 219-25, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22426455

RESUMO

Certain combinations of non-competitive anti-EGFR antibodies have been reported to produce new effects on cells compared to either antibody used separately. New and enhanced combination-activity includes increased inhibition of signaling, increased receptor internalization and degradation, reduced proliferation of tumor cell lines and induction of complement-dependent cytotoxicity (CDC) effector function. To test requirements and mechanisms to elicit enhanced combination-activity with different EGFR binding domains, we created an anti-EGFR biparatopic antibody. A biparatopic antibody interacts through two different antigen-binding sites to a single antigen. A heterodimeric antibody with one binding domain derived from the C225 antibody and one binding domain derived from the humanized 425 (hu425) antibody was built on the strand-exchange engineered domain (SEED) scaffold. This anti-EGFR biparatopic-SEED antibody was compared to parental antibodies used alone and in combination, and to the corresponding monovalent anti-EGFR-SEED antibodies used alone or in combination. We found that the anti-EGFR biparatopic-SEED had enhanced activity, similar to the combination of the two parental antibodies. Combinations of monovalent anti-EGFR-SEED antibodies did not produce enhanced effectiveness in cellular assays. Our results show that the anti-EGFR biparatopic antibody created using the SEED scaffold has enhanced combination-activity in a single molecule. Furthermore, these data suggest that the potential to cross-link the two different epitopes is an important requirement in the mechanism of enhanced combination-activity.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais/imunologia , Receptores ErbB/imunologia , Anticorpos Biespecíficos/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados/química , Sítios de Ligação de Anticorpos , Linhagem Celular Tumoral , Proliferação de Células , Cetuximab , Epitopos/imunologia , Humanos , Estrutura Terciária de Proteína
4.
Protein Eng Des Sel ; 24(5): 447-54, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21498564

RESUMO

The strand-exchange engineered domain (SEED) platform was designed to generate asymmetric and bispecific antibody-like molecules, a capability that expands therapeutic applications of natural antibodies. This new protein engineered platform is based on exchanging structurally related sequences of immunoglobulin within the conserved CH3 domains. Alternating sequences from human IgA and IgG in the SEED CH3 domains generate two asymmetric but complementary domains, designated AG and GA. The SEED design allows efficient generation of AG/GA heterodimers, while disfavoring homodimerization of AG and GA SEED CH3 domains. Using a clinically validated antibody (C225), we tested whether Fab derivatives constructed on the SEED platform retain desirable therapeutic antibody features such as in vitro and in vivo stability, favorable pharmacokinetics, ligand binding and effector functions including antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. In addition, we tested SEED with combinations of binder domains (scFv, VHH, Fab). Mono- and bivalent Fab-SEED fusions retain full binding affinity, have excellent biochemical and biophysical stability, and retain desirable antibody-like characteristics conferred by Fc domains. Furthermore, SEED is compatible with different combinations of Fab, scFv and VHH domains. Our assessment shows that the new SEED platform expands therapeutic applications of natural antibodies by generating heterodimeric Fc-analog proteins.


Assuntos
Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Especificidade de Anticorpos , Engenharia de Proteínas/métodos , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Afinidade de Anticorpos , Linhagem Celular Tumoral , Proteínas do Sistema Complemento/imunologia , Receptores ErbB/imunologia , Meia-Vida , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/genética , Masculino , Camundongos , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
5.
Protein Eng Des Sel ; 23(4): 195-202, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20299542

RESUMO

Bispecific antibodies and asymmetric Fc fusion proteins offer opportunities for important advances in therapeutics. Bivalent IgG depends upon in vivo dimerization of its heavy chains, mediated by homodimeric association of its C(H)3 domains. We have developed a heterodimeric Fc platform that supports the design of bispecific and asymmetric fusion proteins by devising strand-exchange engineered domain (SEED) C(H)3 heterodimers. These derivatives of human IgG and IgA C(H)3 domains create complementary human SEED C(H)3 heterodimers that are composed of alternating segments of human IgA and IgG C(H)3 sequences. The resulting pair of SEED C(H)3 domains preferentially associates to form heterodimers when expressed in mammalian cells. SEEDbody (Sb) fusion proteins consist of [IgG1 hinge]-C(H)2-[SEED C(H)3], that may be genetically linked to one or more fusion partners. This investigation reports on the generation of mono-Fab-Sb and Sb-IL2 monocytokine as models. They were expressed at high levels in NS/0 cells, purified on recombinant protein A resin and were well-behaved in solution. When administered intravenously to mice, Sb pharmacokinetics exhibited the long serum half-life extensions typical of comparable Fc-containing immunofusion and IgG1 controls.


Assuntos
Anticorpos Biespecíficos/química , Fragmentos Fc das Imunoglobulinas/química , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/metabolismo , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Especificidade de Anticorpos , Dimerização , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
6.
Endocrinology ; 147(9): 4205-12, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16794004

RESUMO

A chimeric recombinant human gonadotropin, termed C3, demonstrates both follitropic and lutropic bioactivities. The alpha-subunit construct for C3 is comprised of the recombinant wild-type human glycoprotein hormone alpha-subunit. The beta-subunit DNA construct for C3 encodes residues 1-145 from human chorionic gonadotropin (hCG)-beta with the exceptions that FSH beta amino acid 88 (D) is substituted for hCG beta amino acid 94 (R) and FSH beta amino acids 95-108 (TVRGLGPSYCSFGE) are substituted for hCG beta amino acids 101-114 (GGPKDHPLTCDDPR). C3 is a potent FSH and LH agonist able to bind and to signal through FSH and LH receptors in vitro. In in vivo bioassays optimized to quantify each type of activity, C3 was found to have lutropin and follitropin potencies at levels similar to those of recombinant human LH and recombinant human FSH, respectively. In immature rats, C3 was sufficient to support the maturation of normal ovarian follicles. Moreover, a significant portion of follicles matured by C3 ruptured in response to an ovulatory hCG stimulus and gave rise to morphologically normal oocytes. Furthermore, a low dose of C3 promoted weight gain in the rodent uterus, suggesting it also supported preparation for implantation without histological evidence of excessive luteinization of the ovary. In summary, the biological properties of C3 indicate that its chimeric nature has resulted in a fully functional, dual-acting human gonadotropin.


Assuntos
Gonadotropina Coriônica/genética , Hormônio Foliculoestimulante/genética , Proteínas Recombinantes de Fusão/farmacologia , Sequência de Aminoácidos , Animais , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica Humana Subunidade beta/química , Gonadotropina Coriônica Humana Subunidade beta/genética , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/fisiologia , Feminino , Hormônio Foliculoestimulante/farmacologia , Subunidade beta do Hormônio Folículoestimulante/química , Subunidade beta do Hormônio Folículoestimulante/genética , Humanos , Dados de Sequência Molecular , Tamanho do Órgão/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/fisiologia , Ratos , Receptores do FSH/metabolismo , Receptores do LH/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Útero/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA