Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1346610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638695

RESUMO

Introduction: The remarkable diversity observed in the structure and development of the molluscan nervous system raises intriguing questions regarding the molecular mechanisms underlying neurogenesis in Mollusca. The expression of SoxB family transcription factors plays a pivotal role in neuronal development, thereby offering valuable insights into the strategies of neurogenesis. Methods: In this study, we conducted gene expression analysis focusing on SoxB-family transcription factors during early neurogenesis in the gastropod Lymnaea stagnalis. We employed a combination of hybridization chain reaction in situ hybridization (HCR-ISH), immunocytochemistry, confocal microscopy, and cell proliferation assays to investigate the spatial and temporal expression patterns of LsSoxB1 and LsSoxB2 from the gastrula stage to hatching, with particular attention to the formation of central ring ganglia. Results: Our investigation reveals that LsSoxB1 demonstrates expanded ectodermal expression from the gastrula to the hatching stage, whereas expression of LsSoxB2 in the ectoderm ceases by the veliger stage. LsSoxB1 is expressed in the ectoderm of the head, foot, and visceral complex, as well as in forming ganglia and sensory cells. Conversely, LsSoxB2 is mostly restricted to the subepithelial layer and forming ganglia cells during metamorphosis. Proliferation assays indicate a uniform distribution of dividing cells in the ectoderm across all developmental stages, suggesting the absence of distinct neurogenic zones with increased proliferation in gastropods. Discussion: Our findings reveal a spatially and temporally extended pattern of SoxB1 expression in a gastropod representative compared to other lophotrochozoan species. This prolonged and widespread expression of SoxB genes may be interpreted as a form of transcriptional neoteny, representing a preadaptation to prolonged neurogenesis. Consequently, it could contribute to the diversification of nervous systems in gastropods and lead to an increase in the complexity of the central nervous system in Mollusca.

2.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108352

RESUMO

The identification of tissue-specific promoters for gene therapeutic constructs is one of the aims of complex tumor therapy. The genes encoding the fibroblast activation protein (FAP) and the connective tissue growth factor (CTGF) can function in tumor-associated stromal cells but are practically inactive in normal adult cells. Accordingly, the promoters of these genes can be used to develop vectors targeted to the tumor microenvironment. However, the efficiency of these promoters within genetic constructs remains underexplored, particularly, at the organism level. Here, we used the model of Danio rerio embryos to study the efficiency of transient expression of marker genes under the control of promoters of the FAP, CTGF, and immediate early genes of Human cytomegalovirus (CMV). Within 96 h after the injection of vectors, the CTGF and CMV promoters provided similar equal efficiency of reporter protein accumulation. In the case of the FAP promoter, a high level of reporter protein accumulation was observed only in certain zebrafish individuals that were considered developmentally abnormal. Disturbed embryogenesis was the factor of changes in the exogenous FAP promoter function. The data obtained make a significant contribution to understanding the function of the human CTGF and FAP promoters within vectors to assess their potential in gene therapy.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Infecções por Citomegalovirus , Adulto , Animais , Humanos , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Infecções por Citomegalovirus/genética , Regiões Promotoras Genéticas , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Nat Commun ; 13(1): 2901, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614045

RESUMO

Adrenal glands are the major organs releasing catecholamines and regulating our stress response. The mechanisms balancing generation of adrenergic chromaffin cells and protecting against neuroblastoma tumors are still enigmatic. Here we revealed that serotonin (5HT) controls the numbers of chromaffin cells by acting upon their immediate progenitor "bridge" cells via 5-hydroxytryptamine receptor 3A (HTR3A), and the aggressive HTR3Ahigh human neuroblastoma cell lines reduce proliferation in response to HTR3A-specific agonists. In embryos (in vivo), the physiological increase of 5HT caused a prolongation of the cell cycle in "bridge" progenitors leading to a smaller chromaffin population and changing the balance of hormones and behavioral patterns in adulthood. These behavioral effects and smaller adrenals were mirrored in the progeny of pregnant female mice subjected to experimental stress, suggesting a maternal-fetal link that controls developmental adaptations. Finally, these results corresponded to a size-distribution of adrenals found in wild rodents with different coping strategies.


Assuntos
Células Cromafins , Neuroblastoma , Glândulas Suprarrenais/metabolismo , Animais , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Feminino , Camundongos , Neuroblastoma/metabolismo , Gravidez , Serotonina/metabolismo
4.
ACS Chem Neurosci ; 10(8): 3888-3899, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31291540

RESUMO

Serotonin (5-HT) is a key player in many physiological processes in both the adult organism and developing embryo. One of the mechanisms for 5-HT-mediated effects is covalent binding of 5-HT to the target proteins catalyzed by transglutaminases (serotonylation). Despite the implication in a variety of physiological processes, the involvement of serotonylation in embryonic development remains unclear. Here we tested the hypothesis that 5-HT serves as a substrate for transglutaminase-mediated transamidation of the nuclear proteins in the early embryos of both vertebrates and invertebrates. For this, we demonstrated that the level of serotonin immunoreactivity (5-HT-ir) in cell nuclei increases upon the elevation of 5-HT concentration in embryos of sea urchins, mollusks, and teleost fish. Consistently, pharmacological inhibition of transglutaminase activity resulted in the reduction of both brightness and nuclear localization of anti-5-HT staining. We identified specific and bright 5-HT-ir within nuclei attributed to a subset of different cell types: ectodermal and endodermal, macro- and micromeres, and blastoderm. Western blot and dot blot confirmed the presence of 5-HT-ir epitopes in the normal embryos of all the species examined. The experimental elevation of 5-HT level led to the enhancement of 5-HT-ir-related signal on blots in a species-specific manner. The obtained results demonstrate that 5-HT is involved in transglutaminase-dependent monoaminylation of nuclear proteins and suggest nuclear serotonylation as a possible regulatory mechanism during early embryonic development. The results reveal that this pathway is conserved in the development of both vertebrates and invertebrates.


Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/fisiologia , Serotonina/metabolismo , Transglutaminases/metabolismo , Animais , Moluscos , Ouriços-do-Mar , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA