Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 632(8024): 273-279, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020169

RESUMO

Helical spin structures are expressions of magnetically induced chirality, entangling the dipolar and magnetic orders in materials1-4. The recent discovery of helical van der Waals multiferroics down to the ultrathin limit raises prospects of large chiral magnetoelectric correlations in two dimensions5,6. However, the exact nature and magnitude of these couplings have remained unknown so far. Here we perform a precision measurement of the dynamical magnetoelectric coupling for an enantiopure domain in an exfoliated van der Waals multiferroic. We evaluate this interaction in resonance with a collective electromagnon mode, capturing the impact of its oscillations on the dipolar and magnetic orders of the material with a suite of ultrafast optical probes. Our data show a giant natural optical activity at terahertz frequencies, characterized by quadrature modulations between the electric polarization and magnetization components. First-principles calculations further show that these chiral couplings originate from the synergy between the non-collinear spin texture and relativistic spin-orbit interactions, resulting in substantial enhancements over lattice-mediated effects. Our findings highlight the potential for intertwined orders to enable unique functionalities in the two-dimensional limit and pave the way for the development of van der Waals magnetoelectric devices operating at terahertz speeds.

2.
Proc Natl Acad Sci U S A ; 121(23): e2318411121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805279

RESUMO

Frustrated rare-earth-based intermetallics provide a promising platform for emergent magnetotransport properties through exchange coupling between conduction electrons and localized rare-earth magnetic moments. Metamagnetism, the abrupt change of magnetization under an external magnetic field, is a signature of first-order magnetic phase transitions; recently, metamagnetic transitions in frustrated rare earth intermetallics have attracted interest for their accompanying nontrivial spin structures (e.g., skyrmions) and associated nonlinear and topological Hall effects (THE). Here, we present metamagnetism-induced Hall anomalies in single-crystalline ErGa2, which recalls features arising from the THE but wherein the strong Ising-type anisotropy of Er moments prohibits noncoplanar spin structures. We show that the observed anomalies are neither due to anomalous Hall effect nor THE; instead, can be accounted for via 4f-5d interactions which produce a band-dependent mobility modulation. This leads to a pronounced multiband Hall response across the magnetization process-a metamagnetic multiband Hall effect that resembles a topological-Hall-like response but without nontrivial origins. The present findings may be of general relevance in itinerant metamagnetic systems regardless of coplanar/noncoplanar nature of spins and are important for the accurate identification of Hall signals due to emergent magnetic fields.

3.
Sci Rep ; 13(1): 6876, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106004

RESUMO

In some materials exhibiting field-induced first-order transitions (FOTs), the equilibrium phase-transition line is hidden by the hysteresis region associated with the FOT. In general, phase diagrams form the basis for the study of material science, and the profiles of phase-transition lines separating different thermodynamic phases include comprehensive information about thermodynamic quantities, such as latent heat. However, in a field-induced FOT, the equilibrium phase-transition line cannot be precisely determined from measurements of resistivity, magnetization, etc, especially when the transition is accompanied by large hysteresis. Here, we demonstrate a thermodynamics-based method for determining the hidden equilibrium FOT line in a material exhibiting a field-induced FOT. This method is verified for the field-induced FOT between antiferromagnetic and ferrimagnetic states in magneto-electric compounds ([Formula: see text]. The equilibrium FOT line determined based on the Clausius-Clapeyron equation exhibits a reasonable profile in terms of the third law of thermodynamics, and it shows marked differences from the midpoints of the hysteresis region. Our findings highlight that for a field-induced FOT exhibiting large hysteresis, care should be taken for referring to the hysteresis midpoint line when discussing field-induced latent heat or magnetocaloric effects.

4.
Nat Commun ; 14(1): 1260, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898999

RESUMO

Bose-Einstein condensation (BEC) in quantum magnets, where bosonic spin excitations condense into ordered ground states, is a realization of BEC in a thermodynamic limit. Although previous magnetic BEC studies have focused on magnets with small spins of S ≤ 1, larger spin systems potentially possess richer physics because of the multiple excitations on a single site level. Here, we show the evolution of the magnetic phase diagram of S = 3/2 quantum magnet Ba2CoGe2O7 when the averaged interaction J is controlled by a dilution of magnetic sites. By partial substitution of Co with nonmagnetic Zn, the magnetic order dome transforms into a double dome structure, which can be explained by three kinds of magnetic BECs with distinct excitations. Furthermore, we show the importance of the randomness effects induced by the quenched disorder: we discuss the relevance of geometrical percolation and Bose/Mott glass physics near the BEC quantum critical point.

5.
Phys Rev Lett ; 125(7): 076602, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857583

RESUMO

The topological Hall effect (THE) and its thermoelectric counterpart, the topological Nernst effect (TNE), are hallmarks of the skyrmion lattice phase (SkL). We observed the giant TNE of the SkL in centrosymmetric Gd_{2}PdSi_{3}, comparable in magnitude to the largest anomalous Nernst signals in ferromagnets. Significant enhancement (suppression) of the THE occurs when doping electrons (holes) to Gd_{2}PdSi_{3}. On the electron-doped side, the topological Hall conductivity approaches the characteristic threshold ∼1000 (Ω cm)^{-1} for the intrinsic regime. We use the filling-controlled samples to confirm Mott's relation between TNE and THE and discuss the importance of Gd-5d orbitals for transport in this compound.

6.
Nat Commun ; 10(1): 5831, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874953

RESUMO

Magnetic skyrmion textures are realized mainly in non-centrosymmetric, e.g. chiral or polar, magnets. Extending the field to centrosymmetric bulk materials is a rewarding challenge, where the released helicity/vorticity degree of freedom and higher skyrmion density result in intriguing new properties and enhanced functionality. We report here on the experimental observation of a skyrmion lattice (SkL) phase with large topological Hall effect and an incommensurate helical pitch as small as 2.8 nm in metallic Gd3Ru4Al12, which materializes a breathing kagomé lattice of Gadolinium moments. The magnetic structure of several ordered phases, including the SkL, is determined by resonant x-ray diffraction as well as small angle neutron scattering. The SkL and helical phases are also observed directly using Lorentz-transmission electron microscopy. Among several competing phases, the SkL is promoted over a low-temperature transverse conical state by thermal fluctuations in an intermediate range of magnetic fields.

7.
Science ; 365(6456): 914-918, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31395744

RESUMO

Geometrically frustrated magnets can host complex spin textures, leading to unconventional electromagnetic responses. Magnetic frustration may also promote topologically nontrivial spin states such as magnetic skyrmions. Experimentally, however, skyrmions have largely been observed in noncentrosymmetric lattice structures or interfacial symmetry-breaking heterostructures. Here, we report the emergence of a Bloch-type skyrmion state in the frustrated centrosymmetric triangular-lattice magnet Gd2PdSi3 We observed a giant topological Hall response, indicating a field-induced skyrmion phase, which is further corroborated by the observation of in-plane spin modulation probed by resonant x-ray scattering. Our results may lead to further discoveries of emergent electrodynamics in magnetically frustrated centrosymmetric materials.

8.
Phys Rev Lett ; 119(23): 237201, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29286691

RESUMO

The formation of the triangular Skyrmion lattice is found in a tetragonal polar magnet VOSe_{2}O_{5}. By magnetization and small-angle neutron scattering measurements on the single crystals, we identify a cycloidal spin state at zero field and a Néel-type Skyrmion-lattice phase under a magnetic field along the polar axis. Adjacent to this phase, another magnetic phase of an incommensurate spin texture is identified at lower temperatures, tentatively assigned to a square Skyrmion-lattice phase. These findings exemplify the versatile features of Néel-type Skyrmions in bulk materials, and provide a further opportunity to explore the physics of topological spin textures in polar magnets.

9.
Adv Mater ; 29(21)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370455

RESUMO

A magnetic skyrmion is a nanometer-scale magnetic vortex carrying an integer topological charge. Skyrmions show a promise for potential application in low-power-consumption and high-density memory devices. To promote their use in applications, it is attempted to control the existence of skyrmions using low electric currents at room temperature (RT). This study presents real-space observations for the current-induced formation and annihilation of a skyrmion lattice (SkL) as well as isolated skyrmions in a microdevice composed of a thin chiral magnet Co8 Zn9 Mn3 with a Curie temperature, TC ≈ 325 K, above RT. It is found that the critical current for the manipulation of Bloch-type skyrmions is on the order of 108 A m-2 , approximately three orders of magnitude lower than that needed for the creation and drive of ferromagnetic (FM) domain walls in thin FM films. The in situ real-space imaging also demonstrates the dynamical topological transition from a helical or conical structure to a SkL induced by the flow of DC current, thus paving the way for the electrical control of magnetic skyrmions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA