Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(2): E124-E133, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088866

RESUMO

Soy protein has shown remarkable effectiveness in reducing fat mass compared with other protein sources, and exercise has the potential to further enhance this fat loss effect. Previous studies have demonstrated that soy protein intake leads to decreased fatty acid synthesis, which contributes to its fat-loss properties. However, the exact mechanism by which these lipids are consumed remains unclear. To investigate this, we conducted a comprehensive study using C57/BL6 male mice, comparing the effects of soy and casein proteins with and without exercise (Casein-Sed, Casein-Ex, Soy-Sed, and Soy-Ex groups) under high- and low-protein conditions (14% or 40% protein). Our findings revealed that combining soy protein intake with exercise significantly reduced epididymal white adipose tissue (eWAT) weight, particularly in the high-protein diet group. Further analysis revealed that exercise increased the expression of lipid oxidation-regulatory proteins, including mitochondrial oxidative phosphorylation protein (OXPHOS) complexes, in the plantaris muscle regardless of the protein source. Although soy protein intake did not directly affect muscle mitochondrial protein expression, the activity of OXPHOS complex I was additively enhanced by exercise and soy protein under the 40% protein condition. Notably, complex I activity inversely correlated with eWAT weight in the soy protein diet group. These results highlight the potential link between improved complex I activity induced by soy protein and fat mass reduction, which emphasizes the promising benefits of combining soy protein with exercise in promoting fat loss.NEW & NOTEWORTHY The findings revealed that soy protein intake combined with exercise resulted in reduced adipose tissue weight compared with that obtained with casein protein intake. Furthermore, the joint impact of exercise and soy protein consumption resulted in enhanced activity of oxidative phosphorylation protein (OXPHOS) complex I in fast-twitch muscles, which appears to be associated with fat mass reduction. These findings elucidate the potential additive effects of soy protein and exercise on body weight management.


Assuntos
Caseínas , Proteínas de Soja , Masculino , Camundongos , Animais , Proteínas de Soja/farmacologia , Proteínas de Soja/metabolismo , Caseínas/metabolismo , Caseínas/farmacologia , Gordura Intra-Abdominal , Dieta , Músculo Esquelético/metabolismo , Ingestão de Alimentos/fisiologia
2.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 128-133, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38158677

RESUMO

The neuronal nitric oxide synthase (nNOS; encoded by NOS1)-derived nitric oxide (NO) plays an important role in maintaining skeletal muscle mass. In adult skeletal muscle, nNOS localizes to the cell membrane, cytosol, and nucleus, and regulates muscle hypertrophy and atrophy in various subcellular fractions. However, its role in muscle stem cells (also known as muscle satellite cells), which provide myonuclei for postnatal muscle growth, maintenance, and regeneration, remains unclear. The present study aimed to determine nNOS expression in muscle satellite cell-derived primary myoblasts during differentiation and its DNA methylation levels, an epigenetic modification that controls gene expression. Undifferentiated and differentiated satellite cell-derived primary myoblasts were found to express nNOS. Immunohistochemical analysis revealed that nNOS colocalized with Pax7 (satellite cell marker) only in the undifferentiated myoblasts. Furthermore, nNOS immunoreactivity spread to the cytosol of Pax7-negative differentiated myotube-like cells. The level of Nos1µ mRNA, the main isoform of skeletal muscle nNOS, was increased in differentiated satellite cell-derived primary myoblasts compared to that in the undifferentiated cells. However, Nos1 methylation levels remained unchanged during differentiation. These findings suggest that nNOS induction and the appropriate transition of its subcellular localization may contribute to muscle differentiation.


Assuntos
Óxido Nítrico Sintase Tipo I , Células Satélites de Músculo Esquelético , Humanos , Diferenciação Celular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Células Satélites de Músculo Esquelético/metabolismo
3.
FASEB J ; 35(8): e21767, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34325488

RESUMO

Running exercise has beneficial effects on brain health. However, the effects of relatively short-term running exercise (STEx) on behavior, and its underlying signaling pathways, are poorly understood. In this study, we evaluated the possibility that the regulation by STEx of brain-derived neurotrophic factor (BDNF) and neuronal nitric oxide synthase (nNOS, encoded by NOS1), which are important molecules for anxiety regulation, might involve mechanisms of epigenetic modification, such as DNA methylation. C57BL/6J male mice were divided into sedentary (SED, n = 12) and STEx (EX, n = 15) groups; STEx was conducted with the mice for a duration of 11 days. STEx reduced anxiety-like behaviors, and STEx reduced Nos1α and increased Bdnf exon I and IV mRNA levels in the hippocampus. Interestingly, behavioral parameters were associated with Bdnf exon I and IV and Nos1α mRNA levels in the ventral, but not dorsal, hippocampal region. However, STEx had no effect on peroxisome proliferator-activated receptor-γ coactivator 1α (Pgc-1α) or fibronectin type III domain-containing 5 (Fndc5) mRNA levels, which are relatively long-term exercise-induced upstream regulators of BDNF. In parallel with gene expression changes, we found, for the first time, that STEx downregulated Bdnf promoter IV and upregulated Nos1 DNA methylation levels in the hippocampus, and these patterns were partially different between the dorsal and ventral regions. These findings suggest that the beneficial effects of running exercise on mood regulation may be controlled by alterations in epigenetic mechanisms, especially in the ventral hippocampus. These effects occur even after a relatively short-term period of exercise.


Assuntos
Ansiedade/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Condicionamento Físico Animal/fisiologia , Corrida/fisiologia , Tecido Adiposo , Animais , Comportamento Animal , Composição Corporal , Peso Corporal , Fator Neurotrófico Derivado do Encéfalo/genética , Metilação de DNA , Fibronectinas/genética , Fibronectinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo I/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA