Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1868(3): 130562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218459

RESUMO

The biomimetic nature of supramolecular systems, the structural similarity of synthetic surfactants to biomolecules (lipids, proteins), provide them with high membranotropy, the ability to overcome biological barriers, and affinity towards biosubstances. Despite rather high toxicity cationic surfactants are of importance as antimicrobial agents, gene nanocarriers and mitochondria targeted ligands. To minimize this limitation, cationic amphiphilic matrix undergoes modification with various functional groups. In this work, new piperidinium cationic surfactants containing one or two carbamate fragments were prepared; their aggregation behavior was systematically studied by tensiometery, spectrophotometry and fluorimetry. The presence of a carbamate fragment leads to a 2-3-fold decrease in critical micelle concentration and to a significant increase in solubilization capacity compared to unsubstituted analogue. Evaluation of the antimicrobial effect showed that all compounds exhibit high bactericidal and fungicidal activity against a wide range of pathogenic microorganisms, including their resistant forms. Importantly, the introducing carbamate moiety allows of decreasing hemolytic activity of cationic surfactants. The data obtained make it possible to recommend carbamate piperidinium surfactants as effective biocompatible and biodegradable nanocontainers for hydrophobic probes with high antimicrobial effect and moderate hemolytic activity.


Assuntos
Anti-Infecciosos , Tensoativos , Tensoativos/farmacologia , Tensoativos/química , Carbamatos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Micelas
2.
Nanotechnology ; 33(15)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34959230

RESUMO

In this work, a noncovalent strategy was successfully used to modify colloidal stability andin vitroandin vivoefficacy of two amphiphilic formulations of the anti-inflammatory drug indomethacin. Namely, nanoemulsions and microemulsions based on oleic acid and nonionic surfactants have been produced and compared. The influence of cationic surfactants cetyltrimethylammonium bromide and its carbamate bearing analogue on the size characteristics, stability and ability to provide prolonged action of loaded drug indomethacin has been evaluated. Adding the positively charged molecules in the surface layer of nanoemulsions and microemulsions has shown the stability increase along with maintaining the size characteristics and homogeneity in time. Moreover, the carbamate modified analogue demonstrated beneficial behavior. Indomethacin loaded in microemulsions and nanoemulsions showed prolonged-release (10%-15% release for 5 h) compared to a free drug (complete release for 5 h). The rate of release of indomethacin from nanoemulsions was slightly higher than from microemulsions and insignificantly decreased with an increase in the concentration of the cationic surfactant. For carbamate surfactant nanocarrier loaded with fluorescence probe Nile Red, the ability to penetrate into the cell was supported by flow cytometry study and visualized by fluorescence microscopy.In vitrotests on anti-inflammatory activity of the systems demonstrated that the blood cell membrane stabilization increased in the case of modified microemulsion. The anti-inflammatory activity of the encapsulated drug was tested in rats using a carrageenan-induced edema model. Nanoemulsions without cationic surfactants appeared more efficient compared to microemulsions. Indomethacin emulsion formulations with carbamate surfactant added showed slower carrageenan-induced edema progression compared to unmodified compositions. Meanwhile, the edema completely disappeared upon treatment with emulsion loaded indomethacin after 4 h in the case of microemulsions versus 5 h in the case of nanoemulsions.


Assuntos
Anti-Inflamatórios não Esteroides , Emulsões , Indometacina , Tensoativos , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Edema/metabolismo , Emulsões/química , Emulsões/farmacocinética , Humanos , Indometacina/química , Indometacina/farmacocinética , Indometacina/farmacologia , Masculino , Ratos , Ratos Wistar , Solubilidade , Tensoativos/química , Tensoativos/farmacocinética
3.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884951

RESUMO

Antimicrobial, membranotropic and cytotoxic properties of dicationic imidazolium surfactants of n-s-n (Im) series with variable length of alkyl group (n = 8, 10, 12, 14, 16) and spacer fragment (s = 2, 3, 4) were explored and compared with monocationic analogues. Their activity against a representative range of Gram-positive and Gram-negative bacteria, and also fungi, is characterized. The relationship between the biological activity and the structural features of these compounds is revealed, with the hydrophobicity emphasized as a key factor. Among dicationic surfactants, decyl derivatives showed highest antimicrobial effect, while for monocationic analogues, the maximum activity is observed in the case of tetradecyl tail. The leading compounds are 2-4 times higher in activity compared to reference antibiotics and prove effective against resistant strains. It has been shown that the antimicrobial effect is not associated with the destruction of the cell membrane, but is due to specific interactions of surfactants and cell components. Importantly, they show strong selectivity for microorganism cells while being of low harm to healthy human cells, with a SI ranging from 30 to 100.


Assuntos
Anti-Infecciosos/síntese química , Fungos/crescimento & desenvolvimento , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Imidazóis/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Linhagem Celular , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química , Imidazóis/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Relação Estrutura-Atividade , Tensoativos/síntese química , Tensoativos/química , Tensoativos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA