Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 260: 115719, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597435

RESUMO

The recently discovered coronavirus, known as SARS-CoV-2, is a highly contagious and potentially lethal viral infection that was declared a pandemic by the World Health Organization on March 11, 2020. Since the beginning of the pandemic, an unprecedented number of COVID-19 vaccine candidates have been investigated for their potential to manage the pandemic. Herein, we reviewed vaccine development and the associated research effort, both traditional and forward-looking, to demonstrate the advantages and disadvantages of their technology, in addition to their efficacy limitations against mutant SARS-CoV-2. Moreover, we report repurposed drug discovery, which mainly focuses on virus-based and host-based targets, as well as their inhibitors. SARS-CoV-2 targets include the main protease (Mpro), and RNA-dependent RNA-polymerase (RdRp), which are the most well-studied and conserved across coronaviruses, enabling the development of broad-spectrum inhibitors of these enzymes.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19/farmacologia , SARS-CoV-2 , RNA
2.
Anticancer Agents Med Chem ; 23(2): 142-163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35440315

RESUMO

Cancer is considered one of the leading causes of death globally, especially patients with lung, pancreatic, or brain tumors are most likely to die of cancer, and patients with prostate and breast cancer are at a high risk of noncancer death. As a result, there is ongoing research regarding developing new, safe, and efficient anticancer agents. Coumarin-based naturally occurring compounds possess a broad spectrum of activity in medicinal chemistry, such as anticancer, anti-inflammatory, antimicrobial, antioxidant agents, etc. Many researchers have synthesized coumarinbased novel therapeutic agents via molecular hybridization technique, which offers an excellent opportunity to develop novel compounds with improved biological activities by incorporating two or more pharmacophores. This review aims to shed light on the recent developments of coumarin-based anticancer hybrid derivatives and their Structure-Activity Relationships (SAR). This review serves as a medium that medicinal chemists could utilize to design and synthesize coumarin derivatives with significant pharmacological value as future anticancer agents.


Assuntos
Anti-Infecciosos , Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Anti-Infecciosos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cumarínicos/química , Estrutura Molecular
3.
RSC Adv ; 12(4): 2102-2106, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35425261

RESUMO

Herein we report an efficient one-pot synthesis of [1,2,4]triazolo[1,5 a][1,3,5]triazines from commercially available substituted aryl/heteroaryl aldehydes and substituted 2-hydrazinyl-1,3,5-triazines via N-bromosuccinimide (NBS) mediated oxidative C-N bond formation. Isomerisation of [1,2,4]triazolo[4,3-a][1,3,5]triazines to [1,2,4]triazolo[1,5-a][1,3,5]triazines is driven by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) affording both isomers with good to excellent yields (70-96%).

4.
Bioorg Med Chem ; 50: 116458, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34687983

RESUMO

Parasitic diseases remain a major public health concern for humans, claiming millions of lives annually. Although different treatments are required for these diseases, drug usage is limited due to the development of resistance and toxicity, which necessitate alternative therapies. It has been shown in the literature that parasitic lactate dehydrogenases (LDH) and malate dehydrogenases (MDH) have unique pharmacological selective and specificity properties compared to other isoforms, thus highlighting them as viable therapeutic targets involved in aerobic and anaerobic glycolytic pathways. LDH and MDH are important therapeutic targets for invasive parasites because they play a critical role in the progression and development of parasitic diseases. Any strategy to impede these enzymes would be fatal to the parasites, paving the way to develop and discover novel antiparasitic agents. This review aims to highlight the importance of parasitic LDH and MDH as therapeutic drug targets in selected obligate apicoplast parasites. To the best of our knowledge, this review presents the first comprehensive review of LDH and MDH as potential antiparasitic targets for drug development studies.


Assuntos
Antiparasitários/farmacologia , Desenvolvimento de Medicamentos , L-Lactato Desidrogenase/antagonistas & inibidores , Malato Desidrogenase/antagonistas & inibidores , Animais , Antiparasitários/síntese química , Antiparasitários/química , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/enzimologia , Humanos , L-Lactato Desidrogenase/metabolismo , Malato Desidrogenase/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium/efeitos dos fármacos , Plasmodium/enzimologia , Schistosoma/efeitos dos fármacos , Schistosoma/enzimologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/enzimologia , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/enzimologia
5.
J Mol Struct ; 1241: 130665, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34007088

RESUMO

SARS-CoV-2 are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. It relies on the fusion of their envelope with the host cell membrane to deliver their nucleocapsid into the host cell. The spike glycoprotein (S) mediates virus entry into cells via the human Angiotensin-converting enzyme 2 (hACE2) protein located on many cell types and tissues' outer surface. This study, therefore, aimed to design and synthesize novel pyrazolone-based compounds as potential inhibitors that would interrupt the interaction between the viral spike protein and the host cell receptor to prevent SARS-CoV 2 entrance into the cell. A series of pyrazolone compounds as potential SARS-CoV-2 inhibitors were designed and synthesized. Employing computational techniques, the inhibitory potentials of the designed compounds against both spike protein and hACE2 were evaluated. Results of the binding free energy from the in-silico analysis, showed that three compounds (7i, 7k and 8f) and six compounds (7b, 7h, 7k, 8d, 8g, and 8h) showed higher and better binding high affinity to SARS-CoV-2 Sgp and hACE-2, respectively compared to the standard drugs cefoperazone (CFZ) and MLN-4760. Furthermore, the outcome of the structural analysis of the two proteins upon binding of the inhibitors showed that the two proteins (SARS-CoV-2 Sgp and hACE-2) were stable, and the structural integrity of the proteins was not compromised. This study suggests pyrazolone-based compounds might be potent blockers of the viral entry into the host cells.

6.
Eur J Med Chem ; 217: 113330, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33744688

RESUMO

Presently, artemisinin-based combination therapy (ACT) is the first-line therapy of Plasmodium falciparum malaria. With the emergence of malaria parasites that are resistant to ACT, alternative antimalarial therapies are urgently needed. In line with this, we designed and synthesised a series of novel N-(7-chloroquinolin-4-yl)-N'-(4,6-diphenylpyrimidin-2-yl)alkanediamine hybrids (6a-7c) and evaluated their inhibitory activity against the NF54 chloroquine-susceptible strain as a promising class of antimalarial compounds. The antiplasmodial screening revealed that seven analogues showed promising to good activity with half-maximal inhibitory concentration (IC50) = 0.32 µM-4.30 µM. Compound 7a with 1,4-diamine butyl linker and 4-hydroxyl phenyl on fourth and sixth position of pyrimidine core showed the most prominent activity with an IC50 value of 0.32 ± 0.06 µM, with a favourable safety profile of 9.79 to human kidney epithelial (HEK293) cells. The remaining six analogues showed moderate activity with IC50 values ranging from 7.50 µM to 83.01 µM. We further investigated the binding affinities of the molecules to two essential cytosolic P. falciparum heat shock protein 70 homologues; PfHsp70-1 and PfHsp70-z. Compound 7a exhibited the highest binding affinity for both PfHsp70s with KD in a lower nanomolar range (4.4-11.4 nM). Furthermore, molecular docking revealed that compounds 6, 6k, 7b and 7a exhibited better fitness in PfHsp70-1 with compound 7a showing the highest and lowest binding scores of -9.8 kcal/mol. Therefore, we speculate that PfHsp70-1 is one of the targets of these inhibitors. The bioisoteric replacement of the groups at phenyl ring at the fourth and sixth position of the pyrimidine core had a constructive association with antiplasmodial activity. The promising antiplasmodial activity of the synthesised analogues illustrates how crucial molecular hybridisation is as a strategy in the development of quinoline-pyrimidine hybrids as prospective antiprotozoal agents.


Assuntos
Antimaláricos/farmacologia , Desenho de Fármacos , Plasmodium falciparum/efeitos dos fármacos , Pirimidinas/farmacologia , Quinolinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Pirimidinas/química , Quinolinas/química , Relação Estrutura-Atividade , Termodinâmica
7.
J Org Chem ; 85(12): 8221-8229, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32406237

RESUMO

A novel green and efficient catalyst-free, mild one-pot, multicomponent synthetic strategy has been developed to construct substituted 3,4-dihydro-2H-benzo[b][1,4]oxazine. This reaction proceeds via in situ formation of Schiff-base followed by base mediated alkylation with phenacyl bromide/substituted phenacyl bromide, finally leading to intramolecular cyclization to give a mixture of diastereomers with excellent diastereoselectivity (up to dr = 99:1), which were isolated as a single diastereomer in moderate to excellent yields (41-92%). Besides, this new versatile methodology provides a wide scope for the synthesis of different functionally substituted benzoxazine scaffolds and can be further exploited as building blocks for the synthesis of multifaceted molecular structures, especially for pharmaceutical applications.

8.
Bioorg Chem ; 79: 46-59, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29753773

RESUMO

A novel series of 4,6-disubstituted pyrazolo[3,4-d]pyrimidines (7-43) bearing various anilines at C-4 position and thiophenethyl or thiopentane moieties at C-6 position have been designed and synthesized by molecular hybridization approach. All the synthesized compounds were evaluated for in vitro CDK2/cyclin E and Abl kinase inhibitory activity as well as anti-proliferative activity against K-562 (chronic myelogeneous leukemia), and MCF-7 (breast adenocarcinoma) cell lines. The structure-activity relationship (SAR) studies revealed that compounds with thiophenethyl group at C-6 with mono-substituted anilines at C-4 exhibited better CDK2 inhibitory activity compared to alkyl group (thiopentane) at C-6 and di-substituted anilines at C-4 of the scaffold. In particular, compounds having 2-chloro, 3-nitro and 4-methylthio aniline groups at C-4 displayed significant enzymatic inhibitory activity against CDK2 with single digit micromolar IC50 values. The in silico molecular docking studies suggested possible binding orientation and the binding energies were in agreement with the observed SAR as well as experimental results. In addition, some of the synthesized compounds showed anti-proliferative effects against K-562 and MCF-7 cancer cell lines with IC50 values in a micromolar range. Thus, the synthesized compounds could be considered as new anticancer hits for further lead optimization.


Assuntos
Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Domínio Catalítico , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina/química , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Spodoptera , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA