Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1607, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383666

RESUMO

The quantum limit in a Fermi liquid, realized when a single Landau level is occupied in strong magnetic fields, gives rise to unconventional states, including the fractional quantum Hall effect and excitonic insulators. Stronger interactions in metals with nearly localized f-electron degrees of freedom increase the likelihood of these unconventional states. However, access to the quantum limit is typically impeded by the tendency of f-electrons to polarize in a strong magnetic field, consequently weakening the interactions. In this study, we propose that the quantum limit in such systems must be approached in reverse, starting from an insulating state at zero magnetic field. In this scenario, Landau levels fill in the reverse order compared to regular metals and are closely linked to a field-induced insulator-to-metal transition. We identify YbB12 as a prime candidate for observing this effect and propose the presence of an excitonic insulator state near this transition.

2.
Inorg Chem ; 62(44): 18179-18188, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37863841

RESUMO

Transition-metal dichalcogenides (TMDs) have long been attractive to researchers for their diverse properties and high degree of tunability. Most recently, interest in magnetically intercalated TMDs has resurged due to their potential applications in spintronic devices. While certain compositions featuring the absence of inversion symmetry such as Fe1/3NbS2 and Cr1/3NbS2 have garnered the most attention, the diverse compositional space afforded through the host matrix composition as well as intercalant identity and concentration is large and remains relatively underexplored. Here, we report the magnetic ground state of Fe1/4NbS2 that was determined from low-temperature neutron powder diffraction as an A-type antiferromagnet. Despite the presence of overall inversion symmetry, the pristine compound manifests spin polarization induced by the antiferromagnetic order at generic k points, based on density functional theory band-structure calculations. Furthermore, by combining synchrotron diffraction, pair distribution function, and magnetic susceptibility measurements, we find that the magnetic properties of Fe1/4NbS2 are sensitive to the Fe site order, which can be tuned via electrochemical lithiation and thermal history.

3.
Nat Commun ; 10(1): 5487, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792205

RESUMO

Kondo insulators are expected to transform into metals under a sufficiently strong magnetic field. The closure of the insulating gap stems from the coupling of a magnetic field to the electron spin, yet the required strength of the magnetic field-typically of order 100 T-means that very little is known about this insulator-metal transition. Here we show that Ce[Formula: see text]Bi[Formula: see text]Pd[Formula: see text], owing to its fortuitously small gap, provides an ideal Kondo insulator for this investigation. A metallic Fermi liquid state is established above a critical magnetic field of only [Formula: see text] 11 T. A peak in the strength of electronic correlations near [Formula: see text], which is evident in transport and susceptibility measurements, suggests that Ce[Formula: see text]Bi[Formula: see text]Pd[Formula: see text] may exhibit quantum criticality analogous to that reported in Kondo insulators under pressure. Metamagnetism and the breakdown of the Kondo coupling are also discussed.

4.
Adv Sci (Weinh) ; 6(4): 1800897, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30828518

RESUMO

Nodal-line semimetals (NLSs) represent a new type of topological semimetallic phase beyond Weyl and Dirac semimetals in the sense that they host closed loops or open curves of band degeneracies in the Brillouin zone. Parallel to the classification of type-I and type-II Weyl semimetals, there are two types of NLSs. The type-I NLS phase has been proposed and realized in many compounds, whereas the exotic type-II NLS phase that strongly violates Lorentz symmetry has remained elusive. First-principles calculations show that Mg3Bi2 is a material candidate for the type-II NLS. The band crossing is close to the Fermi level and exhibits the type-II nature of the nodal line in this material. Spin-orbit coupling generates only a small energy gap (≈35 meV) at the nodal points and does not negate the band dispersion of Mg3Bi2 that yields the type-II nodal line. Based on this prediction, Mg3Bi2 single crystals are synthesized and the presence of the type-II nodal lines in the material is confirmed. The angle-resolved photoemission spectroscopy measurements agree well with the first-principles results below the Fermi level and thus strongly suggest Mg3Bi2 as an ideal material platform for studying the as-yet unstudied properties of type-II nodal-line semimetals.

5.
Nat Mater ; 18(5): 443-447, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30833782

RESUMO

A recurring theme in topological matter is the protection of unusual electronic states by symmetry, for example, protection of the surface states in Z2 topological insulators by time-reversal symmetry1-3. Recently, interest has turned to unusual surface states in the large class of non-symmorphic materials4-12. In particular, KHgSb is predicted to exhibit double quantum spin Hall states10. Here we report measurements of the Hall conductivity in KHgSb in a strong magnetic field B. In the quantum limit, the Hall conductivity is observed to fall exponentially to zero, but the diagonal conductivity is finite. A large gap protects this unusual zero-Hall state. We theoretically propose that, in this quantum limit, the chemical potential drops into the bulk gap, intersecting equal numbers of right- and left-moving quantum spin Hall surface modes to produce the zero-Hall state. The zero-Hall state illustrates how topological protection in a non-symmorphic material with glide symmetry may lead to highly unusual transport phenomena.

6.
J Phys Condens Matter ; 30(7): 075701, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29355107

RESUMO

We report that the partial substitution of Cu for Co has a significant impact on the magnetic properties of the Heusler-phase Weyl fermion candidate ZrCo2Sn. Polycrystalline samples of ZrCo2-x Cu x Sn (x = 0.0-1.0) exhibited a linearly decreasing ferromagnetic transition temperature and similarly decreasing saturated magnetic moment on increasing Cu substitution x. Materials with Cu contents near x = 1 and several other quaternary materials synthesized at the same x (ZrCoT'Sn (T' = Rh, Pd, Ni)) display what appears to be non-ferromagnetic magnetization behavior with spin glass characteristics. Electronic structure calculations suggest that the half-metallic nature of unsubstituted ZrCo2Sn is disrupted significantly by the Cu substitutions, leading to the breakdown of the magnetization versus electron count guidelines usually followed by Heusler phases, and a more typical metallic non-spin-polarized electronic structure at high x.

7.
Sci Adv ; 3(5): e1602510, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28580420

RESUMO

The picture of how a gap closes in a semiconductor has been radically transformed by topological concepts. Instead of the gap closing and immediately reopening, topological arguments predict that, in the absence of inversion symmetry, a metallic phase protected by Weyl nodes persists over a finite interval of the tuning parameter (for example, pressure P). The gap reappears when the Weyl nodes mutually annihilate. We report evidence that Pb1-x Sn x Te exhibits this topological metallic phase. Using pressure to tune the gap, we have tracked the nucleation of a Fermi surface droplet that rapidly grows in volume with P. In the metallic state, we observe a large Berry curvature, which dominates the Hall effect. Moreover, a giant negative magnetoresistance is observed in the insulating side of phase boundaries, in accord with ab initio calculations. The results confirm the existence of a topological metallic phase over a finite pressure interval.

8.
J Phys Condens Matter ; 29(22): 225702, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28441141

RESUMO

We report the growth of high quality bulk crystals, through crystallization from molten Sn flux, of the predicted ferromagnetic Weyl metal ZrCo2-x Sn with the L21 Heusler phase structure. The concentration of Co vacancies in the single crystals is found to be dependent on the initial concentration of Co in the flux. The saturation magnetization increases approximately linearly with decreasing Co deficiency and the ferromagnetic transition temperature changes significantly. p-type carrier conduction and an anomalous Hall effect are observed. The calculated electronic density of states of ZrCo2-x Sn shows a significant change in minority and majority spin state occupancies and a shift in the Fermi level with Co deficiency.

9.
Proc Natl Acad Sci U S A ; 113(25): E3475-81, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27274081

RESUMO

The recent discovery of extreme magnetoresistance (XMR) in LaSb introduced lanthanum monopnictides as a new platform to study this effect in the absence of broken inversion symmetry or protected linear band crossing. In this work, we report XMR in LaBi. Through a comparative study of magnetotransport effects in LaBi and LaSb, we construct a temperature-field phase diagram with triangular shape that illustrates how a magnetic field tunes the electronic behavior in these materials. We show that the triangular phase diagram can be generalized to other topological semimetals with different crystal structures and different chemical compositions. By comparing our experimental results to band structure calculations, we suggest that XMR in LaBi and LaSb originates from a combination of compensated electron-hole pockets and a particular orbital texture on the electron pocket. Such orbital texture is likely to be a generic feature of various topological semimetals, giving rise to their small residual resistivity at zero field and subject to strong scattering induced by a magnetic field.

10.
Nat Mater ; 15(11): 1161-1165, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27348578

RESUMO

The Dirac and Weyl semimetals are unusual materials in which the nodes of the bulk states are protected against gap formation by crystalline symmetry. The chiral anomaly, predicted to occur in both systems, was recently observed as a negative longitudinal magnetoresistance (LMR) in Na3Bi (ref. ) and in TaAs (ref. ). An important issue is whether Weyl physics appears in a broader class of materials. We report evidence for the chiral anomaly in the half-Heusler GdPtBi. In zero field, GdPtBi is a zero-gap semiconductor with quadratic bands. In a magnetic field, the Zeeman energy leads to Weyl nodes. We have observed a large negative LMR with the field-steering properties specific to the chiral anomaly. The chiral anomaly also induces strong suppression of the thermopower. We report a detailed study of the thermoelectric response function αxx of Weyl fermions. The scheme of creating Weyl nodes from quadratic bands suggests that the chiral anomaly may be observable in a broad class of semimetals.

11.
Science ; 350(6259): 413-6, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26338798

RESUMO

In a Dirac semimetal, each Dirac node is resolved into two Weyl nodes with opposite "handedness" or chirality. The two chiral populations do not mix. However, in parallel electric and magnetic fields ( E: || B: ), charge is predicted to flow between the Weyl nodes, leading to negative magnetoresistance. This "axial" current is the chiral (Adler-Bell-Jackiw) anomaly investigated in quantum field theory. We report the observation of a large, negative longitudinal magnetoresistance in the Dirac semimetal Na3Bi. The negative magnetoresistance is acutely sensitive to deviations of the direction of B: from E: and is incompatible with conventional transport. By rotating E: (as well as B: ), we show that it is consistent with the prediction of the chiral anomaly.

12.
Science ; 347(6219): 294-8, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25593189

RESUMO

The topology of the electronic structure of a crystal is manifested in its surface states. Recently, a distinct topological state has been proposed in metals or semimetals whose spin-orbit band structure features three-dimensional Dirac quasiparticles. We used angle-resolved photoemission spectroscopy to experimentally observe a pair of spin-polarized Fermi arc surface states on the surface of the Dirac semimetal Na3Bi at its native chemical potential. Our systematic results collectively identify a topological phase in a gapless material. The observed Fermi arc surface states open research frontiers in fundamental physics and possibly in spintronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA