Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Curr Dev Nutr ; 8(5): 102159, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38779038

RESUMO

Substitution models in epidemiologic studies specifying both substitute and substituted food in relation to disease risk may be useful to inform dietary guidelines. A systematic review of prospective observational studies was performed to quantify the risks of all-cause mortality, cardiovascular disease, and type 2 diabetes (T2D) associated with the substitution of dairy products with other foods and between different dairy products. We systematically searched MEDLINE, Embase, and Web of Science until 28th June, 2023. We calculated summary relative risks (SRRs) and 95% confidence intervals (95% CI) in random-effects meta-analyses. We assessed the risk of bias with the Risk Of Bias In Non-randomized Studies - of Exposure (ROBINS-E) tool and certainty of evidence (CoE) using the Grading of Recommendations Assessment, Development, and Evaluations (GRADE) approach. Fifteen studies (with 34 publications) were included. There was moderate CoE that the substitution of low-fat dairy with red meat was associated with a higher risk of mortality, coronary artery disease, and T2D [SRR (95% CI): 1.11 (1.06, 1.16), 1.13 (1.08, 1.18), and 1.20 (1.16, 1.25)]. A higher risk of mortality and T2D was also observed when substituting low-fat dairy with processed meat [SRR (95% CI): 1.19 (1.11, 1.28) and 1.41 (1.33, 1.49); moderate CoE]. A lower mortality risk was associated with the substitution of dairy and yogurt with whole grains [SRR (95% CI): 0.89 (0.84, 0.93) and 0.91 (0.85, 0.97)], and butter with olive oil [SRR (95% CI): 0.94 (0.92, 0.97); all moderate CoE]. Mainly no associations were observed when substituting dairy products against each other on disease and mortality risk. Our findings indicate associations between substituting dairy with red or processed meat and higher disease risk, whereas its substitution with whole grains was associated with a lower risk. However, there is little robust evidence that substituting whole-fat with low-fat dairy is associated with disease risk. (CRD42022303198).

2.
Eur J Mass Spectrom (Chichester) ; 29(5-6): 370-379, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37587732

RESUMO

Mass spectrometry (MS) has developed over the last decades into the most informative and versatile analytical technology in molecular and structural biology (). The platform enables discovery, identification, and characterisation of non-volatile biomolecules, such as proteins, peptides, DNA, RNA, nutrients, metabolites, and lipids at both speed and scale and can elucidate their interactions and effects. The versatility, robustness, and throughput have rendered MS a major research and development platform in molecular human health and biomedical science. More recently, MS has also been established as the central tool for 'Molecular Nutrition', enabling comprehensive and rapid identification and characterisation of macro- and micronutrients, bioactives, and other food compounds. 'Molecular Nutrition' thereby helps understand bioaccessibility, bioavailability, and bioefficacy of macro- and micronutrients and related health effects. Hence, MS provides a lens through which the fate of nutrients can be monitored along digestion via absorption to metabolism. This in turn provides the bioanalytical foundation for 'Personalised Nutrition' or 'Precision Nutrition' in which design and development of diets and nutritional products is tailored towards consumer and patient groups sharing similar genetic and environmental predisposition, health/disease conditions and lifestyles, and/or objectives of performance and wellbeing. The next level of integrated nutrition science is now being built as 'Systems Nutrition' where public and personal health data are correlated with life condition and lifestyle factors, to establish directional relationships between nutrition, lifestyle, environment, and health, eventually translating into science-based public and personal heath recommendations and actions. This account provides a condensed summary of the contributions of MS to a precise, quantitative, and comprehensive nutrition and health science and sketches an outlook on its future role in this fascinating and relevant field.


Assuntos
Dieta , Estado Nutricional , Humanos , Espectrometria de Massas , Estilo de Vida , Micronutrientes
3.
Front Nutr ; 10: 1193848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545571

RESUMO

Bioactive compounds found in edible plants and foods are vital for human and planetary health, yet their significance remains underappreciated. These natural bioactives, as part of whole diets, ingredients, or supplements, can modulate multiple aspects of human health and wellness. Recent advancements in omic sciences and computational biology, combined with the development of Precision Nutrition, have contributed to the convergence of nutrition and medicine, as well as more efficient and affordable healthcare solutions that harness the power of food for prevention and therapy. Innovation in this field is crucial to feed a growing global population sustainably and healthily. This requires significant changes in our food system, spanning agriculture, production, distribution and consumption. As we are facing pressing planetary health challenges, investing in bioactive-based solutions is an opportunity to protect biodiversity and the health of our soils, waters, and the atmosphere, while also creating value for consumers, patients, communities, and stakeholders. Such research and innovation targets include alternative proteins, such as cellular agriculture and plant-derived protein; natural extracts that improve shelf-life as natural preservatives; upcycling of agricultural by-products to reduce food waste; and the development of natural alternatives to synthetic fertilizers and pesticides. Translational research and innovation in the field of natural bioactives are currently being developed at two levels, using a systems-oriented approach. First, at the biological level, the interplay between these compounds and the human host and microbiome is being elucidated through omics research, big data and artificial intelligence, to accelerate both discovery and validation. Second, at the ecosystem level, efforts are focused on producing diverse nutrient-rich, flavorful, and resilient, yet high-yield agricultural crops, and educating consumers to make informed choices that benefit both their health and the planet. Adopting a system-oriented perspective helps: unravel the intricate and dynamic relationships between bioactives, nutrition, and sustainability outcomes, harnessing the power of nature to promote human health and wellbeing; foster sustainable agriculture and protect the ecosystem. Interdisciplinary collaboration in this field is needed for a new era of research and development of practical food-based solutions for some of the most pressing challenges humanity and our planet are facing today.

4.
Nutrients ; 15(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375666

RESUMO

Protein matters and proteins matter in nutrition and health-why [...].


Assuntos
Proteínas , Proteômica
5.
Adv Nutr ; 14(3): 438-450, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36914032

RESUMO

The health effects of dairy products are still a matter of scientific debate owing to inconsistent findings across trials. Therefore, this systematic review and network meta-analysis (NMA) aimed to compare the effects of different dairy products on markers of cardiometabolic health. A systematic search was conducted in 3 electronic databases [MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), and Web of Science; search date: 23 September 2022]. This study included randomized controlled trials (RCTs) with a ≥12-wk intervention comparing any 2 of the eligible interventions [e.g., high dairy (≥3 servings/d or equal amount in grams per day), full-fat dairy, low-fat dairy, naturally fermented milk products, and low dairy/control (0-2 servings/d or usual diet)]. A pairwise meta-analysis and NMA using random-effects model was performed in the frequentist framework for 10 outcomes [body weight, BMI, fat mass, waist circumference, low-density lipoprotein cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, fasting glucose, glycated hemoglobin, and systolic blood pressure]. Continuous outcome data were pooled using mean differences (MDs) and dairy interventions ranked using the surface under the cumulative ranking curve. Nineteen RCTs with 1427 participants were included. High-dairy intake (irrespective of fat content) showed no detrimental effects on anthropometric outcomes, blood lipids, and blood pressure. Both low-fat and full-fat dairy improved systolic blood pressure (MD: -5.22 to -7.60 mm Hg; low certainty) but, concomitantly, may impair glycemic control (fasting glucose-MD: 0.31-0.43 mmol/L; glycated hemoglobin-MD: 0.37%-0.47%). Full-fat dairy may increase HDL cholesterol compared with a control diet (MD: 0.26 mmol/L; 95% CI: 0.03, 0.49 mmol/L). Yogurt improved waist circumference (MD: -3.47 cm; 95% CI: -6.92, -0.02 cm; low certainty), triglycerides (MD: -0.38 mmol/L; 95% CI: -0.73, -0.03 mmol/L; low certainty), and HDL cholesterol (MD: 0.19 mmol/L; 95% CI: 0.00, 0.38 mmol/L) compared with milk. In conclusion, our findings indicate that there is little robust evidence that a higher dairy intake has detrimental effects on markers of cardiometabolic health. This review was registered at PROSPERO as CRD42022303198.


Assuntos
Doenças Cardiovasculares , Glucose , Humanos , Adulto , HDL-Colesterol , Hemoglobinas Glicadas , Metanálise em Rede , Triglicerídeos , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Nutrients ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36432497

RESUMO

Nature may have the answer to many of our questions about human, animal, and environmental health. Natural bioactives, especially when harvested from sustainable plant and food sources, provide a plethora of molecular solutions to nutritionally actionable, chronic conditions. The spectrum of these conditions, such as metabolic, immune, and gastrointestinal disorders, has changed with prolonged human life span, which should be matched with an appropriately extended health span, which would in turn favour more sustainable health care: "adding years to life and adding life to years". To date, bioactive peptides have been undervalued and underexploited as food ingredients and drugs. The future of translational science on bioactive peptides-and natural bioactives in general-is being built on (a) systems-level rather than reductionist strategies for understanding their interdependent, and at times synergistic, functions; and (b) the leverage of artificial intelligence for prediction and discovery, thereby significantly reducing the time from idea and concept to finished solutions for consumers and patients. This new strategy follows the path from benefit definition via design to prediction and, eventually, validation and production.


Assuntos
Inteligência Artificial , Alimentos Especializados , Animais , Humanos , Peptídeos/metabolismo
8.
Front Nutr ; 9: 979665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118748

RESUMO

Precision Nutrition (PN) is an approach to developing comprehensive and dynamic nutritional recommendations based on individual variables, including genetics, microbiome, metabolic profile, health status, physical activity, dietary pattern, food environment as well as socioeconomic and psychosocial characteristics. PN can help answer the question "What should I eat to be healthy?", recognizing that what is healthful for one individual may not be the same for another, and understanding that health and responses to diet change over time. The growth of the PN market has been driven by increasing consumer interest in individualized products and services coupled with advances in technology, analytics, and omic sciences. However, important concerns are evident regarding the adequacy of scientific substantiation supporting claims for current products and services. An additional limitation to accessing PN is the current cost of diagnostic tests and wearable devices. Despite these challenges, PN holds great promise as a tool to improve healthspan and reduce healthcare costs. Accelerating advancement in PN will require: (a) investment in multidisciplinary collaborations to enable the development of user-friendly tools applying technological advances in omics, sensors, artificial intelligence, big data management, and analytics; (b) engagement of healthcare professionals and payers to support equitable and broader adoption of PN as medicine shifts toward preventive and personalized approaches; and (c) system-wide collaboration between stakeholders to advocate for continued support for evidence-based PN, develop a regulatory framework to maintain consumer trust and engagement, and allow PN to reach its full potential.

9.
Pilot Feasibility Stud ; 8(1): 103, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585649

RESUMO

BACKGROUND: The introduction of complementary foods and changes in milk feeding result in modifications to gastrointestinal function. The interplay between indigestible carbohydrates, host physiology, and microbiome, and immune system development are areas of intense research relevant to early and later-life health. METHODS: This 6-month prospective non-randomised feasibility study was conducted in Auckland, New Zealand (NZ), in January 2018. Forty parents/caregivers and their infants were enrolled, with 30 infants allocated to receive a prebiotic NZ kumara (flesh and skin; a type of sweet potato) prepared as a freeze-dried powder, and ten infants allocated to receive a commercially available probiotic control known to show relevant immune benefits (109 CFU Bifidobacterium lactis BB-12®). The primary outcome was the study feasibility measures which are reported here. RESULTS: Recruitment, participant retention, and data collection met feasibility targets. Some limitations to biological sample collection were encountered, with difficulties in obtaining sufficient plasma sample volumes for the proposed immune parameter analyses. Acceptability of the kumara powder was met with no reported adverse events. CONCLUSION: This study indicates that recruiting infants before introducing complementary foods is feasible, with acceptable adherence to the food-based intervention. These results will inform the protocol of a full-scale randomised controlled trial (RCT) with adjustments to the collection of biological samples to examine the effect of a prebiotic food on the prevalence of respiratory tract infections during infancy. Trial registration Australia New Zealand Clinical Trials Registry ACTRN12618000157279 . Prospectively registered on 02/01/2018.

10.
Front Genet ; 12: 768979, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868255

RESUMO

Scientific research consistently demonstrates that diseases may be delayed, treated, or even prevented and, thereby, health may be maintained with health-promoting functional food ingredients (FFIs). Consumers are increasingly demanding sound information about food, nutrition, nutrients, and their associated health benefits. Consequently, a nutrition industry is being formed around natural foods and FFIs, the economic growth of which is increasingly driven by consumer decisions. Information technology, in particular artificial intelligence (AI), is primed to vastly expand the pool of characterised and annotated FFIs available to consumers, by systematically discovering and characterising natural, efficacious, and safe bioactive ingredients (bioactives) that address specific health needs. However, FFI-producing companies are lagging in adopting AI technology for their ingredient development pipelines for several reasons, resulting in a lack of efficient means for large-scale and high-throughput molecular and functional ingredient characterisation. The arrival of the AI-led technological revolution allows for the comprehensive characterisation and understanding of the universe of FFI molecules, enabling the mining of the food and natural product space in an unprecedented manner. In turn, this expansion of bioactives dramatically increases the repertoire of FFIs available to the consumer, ultimately resulting in bioactives being specifically developed to target unmet health needs.

11.
Nutrients ; 13(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34836088

RESUMO

BACKGROUND: While the bioavailability of cocoa polyphenols, particularly of the monomer (-)-epicatechin, has been investigated after a single-dose intake, the effect of sustained cocoa consumption on the metabolic profile of the structurally related (-)-epicatechin metabolites (SREMs) has not been investigated. METHODS: A randomized, controlled crossover clinical trial in healthy young adults (18-40 year) was conducted to evaluate SREMs after consumption of a single-dose and after daily consumption of 1.3 g of polyphenol-rich cocoa powder for 28 days. The circulating SREMs were measured by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). RESULTS: Twenty subjects (eleven males and nine females) were enrolled. The SREMs concentrations increased to 1741 ± 337 nM after a single-dose and to 1445 ± 270 nM after sustained supplementation. Sulfate conjugates showed higher levels in females (p < 0.05). The epicatechin-3'-glucuronide (E3'G) and epicatechin-3'-sulfate (E3'S) were the most abundant metabolites in all subjects. A high intra-individual correlation (r = 0.72, p < 0.001) between SREMs concentrations after single-dose and sustained supplementation was observed. The antioxidant capacity of plasma did not change in response to the intervention and was not correlated with any of the SREMs. CONCLUSION: The individual SREMs profile and concentrations after a 28-day supplementation are comparable to those after a single dose.


Assuntos
Catequina/sangue , Chocolate , Suplementos Nutricionais , Ingestão de Alimentos/fisiologia , Polifenóis/administração & dosagem , Adolescente , Adulto , Disponibilidade Biológica , Catequina/análogos & derivados , Cromatografia Líquida de Alta Pressão , Estudos Cross-Over , Feminino , Voluntários Saudáveis , Humanos , Masculino , Espectrometria de Massas em Tandem , Adulto Jovem
12.
Nutrients ; 13(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801409

RESUMO

SCOPE: B vitamers are co-enzymes involved in key physiological processes including energy production, one-carbon, and macronutrient metabolism. Studies profiling B vitamers simultaneously in parent-child dyads are scarce. Profiling B vitamers in parent-child dyads enables an insightful determination of gene-environment contributions to their circulating concentrations. We aimed to characterise: (a) parent-child dyad concordance, (b) generation (children versus adults), (c) age (within the adult subgroup (age range 28-71 years)) and (d) sex differences in plasma B vitamer concentrations in the CheckPoint study of Australian children. METHODS AND RESULTS: 1166 children (11 ± 0.5 years, 51% female) and 1324 parents (44 ± 5.1 years, 87% female) took part in a biomedical assessment of a population-derived longitudinal cohort study: The Growing Up in Australia's Child Health CheckPoint. B vitamer levels were quantified by UHPLC/MS-MS. B vitamer levels were weakly concordant between parent-child pairs (10-31% of variability explained). All B vitamer concentrations exhibited generation-specificity, except for flavin mononucleotide (FMN). The levels of thiamine, pantothenic acid, and 4-pyridoxic acid were higher in male children, and those of pantothenic acid were higher in male adults compared to their female counterparts. CONCLUSION: Family, age, and sex contribute to variations in the concentrations of plasma B vitamers in Australian children and adults.


Assuntos
Deficiência de Vitamina B 6/epidemiologia , Vitamina B 6/sangue , Adulto , Idoso , Austrália , Criança , Saúde da Criança , Ingestão de Alimentos , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Relações Pais-Filho , Pais , Plasma , Espectrometria de Massas em Tandem
13.
Anal Biochem ; 592: 113558, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911045

RESUMO

Amino acids (AAs) and one-carbon (1-C) metabolism compounds are involved in a range of key metabolic pathways, and mediate numerous health and disease processes in the human body. Previous assays have quantified a limited selection of these compounds and typically require extensive manual handling. Here, we describe the robotic automation of an analytical method for the simultaneous quantification of 37 1-C metabolites, amino acids, and precursors using reversed-phase ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS-MS). Compound extraction from human plasma was tested manually before being robotically automated. The final automated analytical panel was validated on human plasma samples. Our automated and multiplexed method holds promise for application to large cohort studies.


Assuntos
Aminoácidos/sangue , Automação Laboratorial/instrumentação , Cromatografia Líquida de Alta Pressão/instrumentação , Robótica , Espectrometria de Massas em Tandem/instrumentação , Humanos
14.
Nutrients ; 11(12)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810311

RESUMO

Vitamins B2, B6, B12, and folate are essential for methylation reactions and possibly influence the transport of polyunsaturated fatty acids in plasma and red blood cells (RBC). Associations between B-vitamin biomarkers and fatty acid (FA) profile were analyzed in Brazilian children and adolescents. This cross-sectional study included 249 children and adolescents, aged 9-13 years old. Dietary intake was assessed by the food frequency questionnaire and the healthy eating index (HEI). Biomarkers for vitamins B2, B6, B12, and folate were measured in plasma. The FA profile and the metabolites of one-carbon metabolism were measured in RBC. Associations were tested with multiple linear regression models. An increase of 1 nmol/L in vitamin B2 was associated with an increase of 0.19 mg/dL of EPA, 0.20 mg/dL of ARA, and 0.25 mg/dL of DHA in RBC. An increase of 1 ng/mL in plasma folate was associated with an increase of 0.14 mg/dL of EPA, 0.22 mg/dL of ARA, and 0.21 mg/dL of DHA in RBC. These findings highlight the importance of an adequate intake of vitamin B2 and folate in childhood, since they may improve the FA profile in RBCs and may help prevent cardiovascular disease.


Assuntos
Ácido Araquidônico/sangue , Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Ácido Fólico/sangue , Riboflavina/sangue , Adolescente , Biomarcadores/sangue , Brasil , Criança , Estudos Transversais , Inquéritos sobre Dietas , Dieta Saudável , Eritrócitos/metabolismo , Ácidos Graxos/sangue , Feminino , Humanos , Modelos Lineares , Masculino , Estado Nutricional , Vitamina B 12/sangue , Vitamina B 6/sangue
15.
Pediatr Diabetes ; 20(7): 832-841, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31254470

RESUMO

BACKGROUND: While insulin resistance (IR) is associated with specific metabolite signatures in adults, there have been few truly longitudinal studies in healthy children, either to confirm which abnormalities are present, or to determine whether they precede or result from IR. Therefore, we investigated the association of serum metabolites with IR in childhood in the Earlybird cohort. METHODS: The Earlybird cohort is a well-characterized cohort of healthy children with annual measurements from age 5 to 16 years. For the first time, longitudinal association analyses between individual serum metabolites and homeostatic model assessment (HOMA) of insulin resistance (HOMA-IR) have been performed taking into account the effects of age, growth, puberty, adiposity, and physical activity. RESULTS: IR was higher in girls than in boys and was associated with increasing body mass index (BMI). In longitudinal analysis IR was associated with reduced concentrations of branched-chain amino acids (BCAA), 2-ketobutyrate, citrate and 3-hydroxybutyrate, and higher concentrations of lactate and alanine. These findings demonstrate the widespread biochemical consequences of IR for intermediary metabolism, ketogenesis, and pyruvate oxidation during normal child growth and development. CONCLUSIONS: Longitudinal analysis can differentiate metabolite signatures that precede or follow the development of greater levels of IR. In healthy normal weight children, higher levels of IR are associated with reduced levels of BCAA, ketogenesis, and fuel oxidation. In contrast, elevated lactate concentrations preceded the rise in IR. These changes reveal the metabolite signature of insulin action during normal growth, and they contrast with previous findings in obese children and adults that represent the consequences of IR and obesity.


Assuntos
Sangue/metabolismo , Desenvolvimento Infantil/fisiologia , Resistência à Insulina/fisiologia , Metaboloma , Adiposidade/fisiologia , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Exercício Físico/fisiologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Metabolômica/métodos , Fenótipo , Puberdade/metabolismo , Maturidade Sexual/fisiologia
16.
Adv Nutr ; 10(6): 944-952, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31098626

RESUMO

Diet and lifestyle are vital to population health, but their true contribution is difficult to quantify using traditional methods. Nutrient-health relations are typically based on epidemiological associations that are assessed at the population level, traditionally using self-reported dietary and lifestyle data. Unfortunately, such measures are inherently inaccurate. New technologies such as metabolomics can measure nutritional and micronutrient profiles in body fluids, providing objective evaluation of nutritional status. A critical step toward accurate health prediction models would be the building of integrated repositories of nutritional measures combining subjective methods of reporting with objective metabolomics profiles and precise phenotypic data. Here we outline a roadmap to achieve this goal and discuss both the advantages and risks of this approach. We also highlight the uncertain associations between the complexity of high-dimensional data generated in 'omics research (along with the public confusion this may engender) and the rapid adoption of 'omics approaches by nutrition and health companies to develop nutritional products and services.


Assuntos
Nível de Saúde , Metabolômica , Estado Nutricional , Fenótipo , Antropometria , Dieta , Humanos , Estilo de Vida , Micronutrientes , Nutrientes , Nutrigenômica , Ciências da Nutrição , Medicina de Precisão
17.
J Proteome Res ; 18(3): 1162-1174, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702894

RESUMO

The systems-level relationship between the proteomes of cerebrospinal fluid (CSF) and plasma has not been comprehensively described so far. Recently developed shotgun proteomic workflows allow for deeper characterization of the proteomes from body fluids in much larger sample size. We deployed state-of-the-art mass spectrometry-based proteomics in paired CSF and plasma samples volunteered by 120 elders with and without cognitive impairment to comprehensively characterize and examine compartmental proteome differences and relationships between both body fluids. We further assessed the influence of blood-brain barrier (BBB) integrity and tested the hypothesis that BBB breakdown can be identified from CSF and plasma proteome alterations in nondemented elders. We quantified 790 proteins in CSF and 422 proteins in plasma, and 255 of the proteins were identified in both compartments. Pearson's statistics determined 28 proteins with associated levels between CSF and plasma. BBB integrity as defined with the CSF/serum albumin index influenced 76 CSF/plasma protein ratios. In least absolute shrinkage and selection operator models, CSF and plasma proteins improved identification of BBB impairment. In conclusion, we provide here a first comprehensive draft map of interacting human CSF and plasma proteomes, in view of their complex and dynamic compositions, and influence of the BBB.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Proteínas Sanguíneas/genética , Barreira Hematoencefálica/metabolismo , Proteínas do Líquido Cefalorraquidiano/genética , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Feminino , Humanos , Masculino , Espectrometria de Massas , Permeabilidade , Proteoma/genética , Albumina Sérica/genética
18.
FASEB J ; 33(4): 4660-4674, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30589571

RESUMO

In pancreatic ß-cells, mitochondria generate signals that promote insulin granule exocytosis. Here we study how lysine acetylation of mitochondrial proteins mechanistically affects metabolism-secretion coupling in insulin-secreting cells. Using mass spectrometry-based proteomics, we identified lysine acetylation sites in rat insulinoma cell line clone 1E cells. In cells lacking the mitochondrial lysine deacetylase sirtuin-3 (SIRT3), several matrix proteins are hyperacetylated. Disruption of the SIRT3 gene has a deleterious effect on mitochondrial energy metabolism and Ca2+ signaling. Under resting conditions, SIRT3 deficient cells are overactivated, which elevates the respiratory rate and enhances calcium signaling and basal insulin secretion. In response to glucose, the SIRT3 knockout cells are unable to mount a sustained cytosolic ATP response. Calcium signaling is strongly reduced and the respiratory response as well as insulin secretion are blunted. We propose mitochondrial protein lysine acetylation as a control mechanism in ß-cell energy metabolism and Ca2+ signaling.-De Marchi, U., Galindo, A. N., Thevenet, J., Hermant, A., Bermont, F., Lassueur, S., Domingo, J. S., Kussmann, M., Dayon, L., Wiederkehr, A. Mitochondrial lysine deacetylation promotes energy metabolism and calcium signaling in insulin-secreting cells.


Assuntos
Sinalização do Cálcio/fisiologia , Células Secretoras de Insulina/metabolismo , Lisina/metabolismo , Mitocôndrias/metabolismo , Acetilação , Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Metabolismo Energético/fisiologia , Glucose/farmacologia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Sirtuína 3/metabolismo , Espectrometria de Massas em Tandem
19.
Sci Rep ; 8(1): 16981, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451909

RESUMO

Holistic human proteome maps are expected to complement comprehensive profile assessment of health and disease phenotypes. However, methodologies to analyze proteomes in human tissue or body fluid samples at relevant scale and performance are still limited in clinical research. Their deployment and demonstration in large enough human populations are even sparser. In the present study, we have characterized and compared the plasma proteomes of two large independent cohorts of obese and overweight individuals using shotgun mass spectrometry (MS)-based proteomics. Herein, we showed, in both populations from different continents of about 500 individuals each, the concordance of plasma protein MS measurements in terms of variability, gender-specificity, and age-relationship. Additionally, we replicated several known and new associations between proteins, clinical and molecular variables, such as insulin and glucose concentrations. In conclusion, our MS-based analyses of plasma samples from independent human cohorts proved the practical feasibility and efficiency of a large and unified discovery/replication approach in proteomics, which was also recently coined "rectangular" design.


Assuntos
Proteínas Sanguíneas/metabolismo , Obesidade/sangue , Sobrepeso/sangue , Proteoma , Adulto , Cromatografia Líquida/métodos , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
20.
Microbiome ; 6(1): 171, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241567

RESUMO

BACKGROUND: Weaning is a period of marked physiological change. The introduction of solid foods and the changes in milk consumption are accompanied by significant gastrointestinal, immune, developmental, and microbial adaptations. Defining a reduced number of infections as the desired health benefit for infants around weaning, we identified in silico (i.e., by advanced public domain mining) infant gut microbes as potential deliverers of this benefit. We then investigated the requirements of these bacteria for exogenous metabolites as potential prebiotic feeds that were subsequently searched for in the natural product space. RESULTS: Using public domain literature mining and an in silico reverse metabolic approach, we constructed probiotic-prebiotic-food associations, which can guide targeted feeding of immune health-beneficial microbes by weaning food; analyzed competition and synergy for (prebiotic) nutrients between selected microbes; and translated this information into designing an experimental complementary feed for infants enrolled in a pilot clinical trial ( http://www.nourishtoflourish.auckland.ac.nz/ ). CONCLUSIONS: In this study, we applied a benefit-oriented microbiome research strategy for enhanced early-life immune health. We extended from "classical" to molecular nutrition aiming to identify nutrients, bacteria, and mechanisms that point towards targeted feeding to improve immune health in infants around weaning. Here, we present the systems biology-based approach we used to inform us on the most promising prebiotic combinations known to support growth of beneficial gut bacteria ("probiotics") in the infant gut, thereby favorably promoting development of the immune system.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Sistema Imunitário/imunologia , Metabolômica/métodos , Prebióticos/análise , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Simulação por Computador , Comportamento Alimentar , Feminino , Trato Gastrointestinal/imunologia , Humanos , Lactente , Alimentos Infantis/análise , Saúde do Lactente , Masculino , Prebióticos/administração & dosagem , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA