Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Traffic ; 24(1): 34-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435193

RESUMO

Membrane-enclosed transport carriers sort biological molecules between stations in the cell in a dynamic process that is fundamental to the physiology of eukaryotic organisms. While much is known about the formation and release of carriers from specific intracellular membranes, the mechanism of carrier formation from the recycling endosome, a compartment central to cellular signaling, remains to be resolved. In Caenorhabditis elegans, formation of transport carriers from the recycling endosome requires the dynamin-like, Eps15-homology domain (EHD) protein, RME-1, functioning with the Bin/Amphiphysin/Rvs (N-BAR) domain protein, AMPH-1. Here we show, using a free-solution single-particle technique known as burst analysis spectroscopy (BAS), that AMPH-1 alone creates small, tubular-vesicular products from large, unilamellar vesicles by membrane fission. Membrane fission requires the amphipathic H0 helix of AMPH-1 and is slowed in the presence of RME-1. Unexpectedly, AMPH-1-induced membrane fission is stimulated in the presence of GTP. Furthermore, the GTP-stimulated membrane fission activity seen for AMPH-1 is recapitulated by the heterodimeric N-BAR amphiphysin protein from yeast, Rvs161/167p, strongly suggesting that GTP-stimulated membrane fission is a general property of this important class of N-BAR proteins.


Assuntos
Endocitose , Endossomos , Animais , Membrana Celular/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Membranas Intracelulares , Caenorhabditis elegans , Guanosina Trifosfato/metabolismo
2.
Cell Chem Biol ; 27(10): 1296-1307.e5, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32783962

RESUMO

Many cellular delivery reagents enter the cytosolic space of cells by escaping the lumen of endocytic organelles and, more specifically, late endosomes. The mechanisms involved in endosomal membrane permeation remain largely unresolved, which impedes the improvement of delivery agents. Here, we investigate how 3TAT, a branched analog of the cell-penetrating peptide (CPP) TAT, achieves the permeabilization of bilayers containing bis(monoacylglycero)phosphate (BMP), a lipid found in late endosomes. We establish that the peptide does not induce the leakage of individual lipid bilayers. Instead, leakage requires contact between membranes. Peptide-driven bilayer contacts lead to fusion, lipid mixing, and, critically, peptide encapsulation within proximal bilayers. Notably, this encapsulation is a distinctive property of BMP that explains the specificity of CPP's membrane leakage activity. These results therefore support a model of cell penetration that requires both BMP and the vicinity between bilayers, two features unique to BMP-rich and multivesicular late endosomes.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Endossomos/metabolismo , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , Animais , Linhagem Celular , Peptídeos Penetradores de Células/química , Cricetulus , Endossomos/química , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lisofosfolipídeos/química , Monoglicerídeos/química
3.
Traffic ; 19(6): 421-435, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29582528

RESUMO

Various densely charged polycationic species, whether of biological or synthetic origin, can penetrate human cells, albeit with variable efficiencies. The molecular underpinnings involved in such transport remain unclear. Herein, we assemble 1, 2 or 3 copies of the HIV peptide TAT on a synthetic scaffold to generate branched cell-permeable prototypes with increasing charge density. We establish that increasing TAT copies dramatically increases the cell penetration efficiency of the peptides while simultaneously enabling the efficient cytosolic delivery of macromolecular cargos. Cellular entry involves the leaky fusion of late endosomal membranes enriched with the anionic lipid BMP. Derivatives with multiple TAT branches induce the leakage of BMP-containing lipid bilayers, liposomal flocculation, fusion and an increase in lamellarity. In contrast, while the monomeric counterpart 1TAT binds to the same extent and causes liposomal flocculation, 1TAT does not cause leakage, induce fusion or a significant increase in lamellarity. Overall, these results indicate that an increase in charge density of these branched structures leads to the emergence of lipid specific membrane-disrupting and cell-penetrating activities.


Assuntos
Endossomos/metabolismo , Lipídeos/química , Peptídeos/metabolismo , Linhagem Celular Tumoral , Citosol/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo
4.
PLoS One ; 10(3): e0119563, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799353

RESUMO

Vital cellular processes, from cell growth to synaptic transmission, rely on membrane-bounded carriers and vesicles to transport molecular cargo to and from specific intracellular compartments throughout the cell. Compartment-specific proteins are required for the final step, membrane fission, which releases the transport carrier from the intracellular compartment. The role of fission proteins, especially at intracellular locations and in non-neuronal cells, while informed by the dynamin-1 paradigm, remains to be resolved. In this study, we introduce a highly sensitive approach for the identification and analysis of membrane fission machinery, called burst analysis spectroscopy (BAS). BAS is a single particle, free-solution approach, well suited for quantitative measurements of membrane dynamics. Here, we use BAS to analyze membrane fission induced by the potent, fission-active ENTH domain of epsin. Using this method, we obtained temperature-dependent, time-resolved measurements of liposome size and concentration changes, even at sub-micromolar concentration of the epsin ENTH domain. We also uncovered, at 37°C, fission activity for the full-length epsin protein, supporting the argument that the membrane-fission activity observed with the ENTH domain represents a native function of the full-length epsin protein.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Endocitose/fisiologia , Membranas Intracelulares/metabolismo , Lipossomos/química , Animais , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/metabolismo , Estrutura Terciária de Proteína , Ratos
5.
J Biol Chem ; 285(43): 32695-32703, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20702418

RESUMO

SIRT1 is a protein deacetylase that has emerged as a therapeutic target for the development of activators to treat diseases of aging. SIRT1-activating compounds (STACs) have been developed that produce biological effects consistent with direct SIRT1 activation. At the molecular level, the mechanism by which STACs activate SIRT1 remains elusive. In the studies reported herein, the mechanism of SIRT1 activation is examined using representative compounds chosen from a collection of STACs. These studies reveal that activation of SIRT1 by STACs is strongly dependent on structural features of the peptide substrate. Significantly, and in contrast to studies reporting that peptides must bear a fluorophore for their deacetylation to be accelerated, we find that some STACs can accelerate the SIRT1-catalyzed deacetylation of specific unlabeled peptides composed only of natural amino acids. These results, together with others of this study, are at odds with a recent claim that complex formation between STACs and fluorophore-labeled peptides plays a role in the activation of SIRT1 (Pacholec, M., Chrunyk, B., Cunningham, D., Flynn, D., Griffith, D., Griffor, M., Loulakis, P., Pabst, B., Qiu, X., Stockman, B., Thanabal, V., Varghese, A., Ward, J., Withka, J., and Ahn, K. (2010) J. Biol. Chem. 285, 8340-8351). Rather, the data suggest that STACs interact directly with SIRT1 and activate SIRT1-catalyzed deacetylation through an allosteric mechanism.


Assuntos
Ativadores de Enzimas/química , Peptídeos/química , Sirtuína 1/química , Ativação Enzimática , Humanos , Especificidade por Substrato
6.
Antimicrob Agents Chemother ; 51(1): 119-27, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17074800

RESUMO

The anilinouracils (AUs) such as 6-(3-ethyl-4-methylanilino)uracil (EMAU) are a novel class of gram-positive, selective, bactericidal antibacterials which inhibit pol IIIC, the gram-positive-specific replicative DNA polymerase. We have linked various fluoroquinolones (FQs) to the N-3 position of EMAU to generate a variety of AU-FQ "hybrids" offering the potential for targeting two distinct steps in DNA replication. In this study, the properties of a hybrid, "251D," were compared with those of representative AUs and FQs in a variety of in vitro assays, including pol IIIC and topoisomerase/gyrase enzyme assays, antibacterial, bactericidal, and mammalian cytotoxicity assays. Compound 251D potently inhibited pol IIIC and topoisomerase/gyrase, displayed gram-positive antibacterial potency at least 15 times that of the corresponding AU compound, and as expected, acted selectively on bacterial DNA synthesis. Compound 251D was active against a broad panel of antibiotic-resistant gram-positive pathogens as well as several gram-negative organisms and was also active against both AU- and FQ-resistant gram-positive organisms, demonstrating its capacity for attacking both of its potential targets in the bacterium. 251D also was bactericidal for gram-positive organisms and lacked toxicity in vitro. Although we obtained strains of Staphylococcus aureus resistant to the individual parent compounds, spontaneous resistance to 251D was not observed. We obtained 251D resistance in multiple-passage experiments, but resistance developed at a pace comparable to those for the parent compounds. This class of AU-FQ hybrids provides a promising new pharmacophore with an unusual dual mechanism of action and potent activity against antibiotic-sensitive and -resistant gram-positive pathogens.


Assuntos
Compostos de Anilina/farmacologia , Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Compostos de Anilina/química , Antibacterianos/química , Bacillus/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Polimerase III/antagonistas & inibidores , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Enterococcus/efeitos dos fármacos , Fluoroquinolonas/química , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Inibidores da Topoisomerase II , Uracila/análogos & derivados , Uracila/química , Uracila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA