Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 79(Pt 5): 409-419, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37092969

RESUMO

Iripin-4, one of the many salivary serpins from Ixodes ricinus ticks with an as-yet unexplained function, crystallized in two different structural conformations, namely the native partially relaxed state and the cleaved serpin. The native structure was solved at a resolution of 2.3 Šand the structure of the cleaved conformation was solved at 2.0 Šresolution. Furthermore, structural changes were observed when the reactive-centre loop transitioned from the native conformation to the cleaved conformation. In addition to this finding, it was confirmed that Glu341 represents a primary substrate-recognition site for the inhibitory mechanism. The presence of glutamate instead of the typical arginine in the P1 recognition site of all structurally characterized I. ricinus serpins (PDB entries 7b2t, 7pmu and 7ahp), except for the tyrosine in the P1 site of Iripin-2 (formerly IRS-2; PDB entry 3nda), would explain the absence of inhibition of the tested proteases that cleave their substrate after arginine. Further research on Iripin-4 should focus on functional analysis of this interesting serpin.


Assuntos
Ixodes , Serpinas , Animais , Serpinas/química , Conformação Proteica , Modelos Moleculares , Arginina
2.
J Agric Food Chem ; 70(20): 6134-6144, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35544338

RESUMO

The current chelation therapy has several drawbacks, including lack of selectivity, which could lead to trace metal depletion. Consequently, the proper function of metalloenzymes can be disrupted. Flavonoids possess chelating properties and hence interfere with the homeostasis of essential metals. We focused on zinc, an important trace metal required for the function of many enzymes and transcription factors. After making an initial evaluation of the Zn2+-chelating properties of a series of flavonoids, the effect of these compounds on various zinc-containing enzymes was also investigated. We performed enzyme inhibition assays spectrophotometrically using yeast and equine alcohol dehydrogenases and bovine glutamate dehydrogenase. Nine of the 21 flavonoids tested were capable of chelating Zn2+. Baicalein and 3-hydroxyflavone were the most potent Zn2+ chelators under slightly acidic and neutral pH conditions. This chelation was also confirmed by the ability to reverse Zn2+-induced enzymatic inhibition of bovine glutamate dehydrogenase. Although some flavonoids were also able to inhibit zinc-containing alcohol dehydrogenases, this inhibition was likely not caused by Zn2+ chelation. Luteolin was a relatively potent inhibitor of these enzymes regardless of the presence of Zn2+. Docking studies confirmed the binding of active flavonoids to equine alcohol dehydrogenase without any significant interaction with the catalytic zinc.


Assuntos
Flavonoides , Zinco , Álcool Desidrogenase/metabolismo , Animais , Bovinos , Quelantes/química , Glutamato Desidrogenase , Cavalos , Metais/metabolismo , Zinco/metabolismo
3.
Nutrients ; 13(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34959790

RESUMO

Silymarin is known for its hepatoprotective effects. Although there is solid evidence for its protective effects against Amanita phalloides intoxication, only inconclusive data are available for alcoholic liver damage. Since silymarin flavonolignans have metal-chelating activity, we hypothesized that silymarin may influence alcoholic liver damage by inhibiting zinc-containing alcohol dehydrogenase (ADH). Therefore, we tested the zinc-chelating activity of pure silymarin flavonolignans and their effect on yeast and equine ADH. The most active compounds were also tested on bovine glutamate dehydrogenase, an enzyme blocked by zinc ions. Of the six flavonolignans tested, only 2,3-dehydroderivatives (2,3-dehydrosilybin and 2,3-dehydrosilychristin) significantly chelated zinc ions. Their effect on yeast ADH was modest but stronger than that of the clinically used ADH inhibitor fomepizole. In contrast, fomepizole strongly blocked mammalian (equine) ADH. 2,3-Dehydrosilybin at low micromolar concentrations also partially inhibited this enzyme. These results were confirmed by in silico docking of active dehydroflavonolignans with equine ADH. Glutamate dehydrogenase activity was decreased by zinc ions in a concentration-dependent manner, and this inhibition was abolished by a standard zinc chelating agent. In contrast, 2,3-dehydroflavonolignans blocked the enzyme both in the absence and presence of zinc ions. Therefore, 2,3-dehydrosilybin might have a biologically relevant inhibitory effect on ADH and glutamate dehydrogenase.


Assuntos
Álcool Desidrogenase/antagonistas & inibidores , Quelantes/farmacologia , Flavonolignanos/farmacologia , Silimarina/farmacologia , Zinco/isolamento & purificação , Animais , Glutamato Desidrogenase/antagonistas & inibidores , Cavalos , Silibina/farmacologia , Leveduras/efeitos dos fármacos , Zinco/metabolismo
4.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769421

RESUMO

Haloalkane dehalogenases (EC 3.8.1.5) play an important role in hydrolytic degradation of halogenated compounds, resulting in a halide ion, a proton, and an alcohol. They are used in biocatalysis, bioremediation, and biosensing of environmental pollutants and also for molecular tagging in cell biology. The method of ancestral sequence reconstruction leads to prediction of sequences of ancestral enzymes allowing their experimental characterization. Based on the sequences of modern haloalkane dehalogenases from the subfamily II, the most common ancestor of thoroughly characterized enzymes LinB from Sphingobium japonicum UT26 and DmbA from Mycobacterium bovis 5033/66 was in silico predicted, recombinantly produced and structurally characterized. The ancestral enzyme AncLinB-DmbA was crystallized using the sitting-drop vapor-diffusion method, yielding rod-like crystals that diffracted X-rays to 1.5 Å resolution. Structural comparison of AncLinB-DmbA with their closely related descendants LinB and DmbA revealed some differences in overall structure and tunnel architecture. Newly prepared AncLinB-DmbA has the highest active site cavity volume and the biggest entrance radius on the main tunnel in comparison to descendant enzymes. Ancestral sequence reconstruction is a powerful technique to study molecular evolution and design robust proteins for enzyme technologies.


Assuntos
Hidrolases/química , Mycobacterium bovis/enzimologia , Sphingomonadaceae/enzimologia , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X/métodos , Evolução Molecular , Hidrolases/metabolismo , Hidrólise , Modelos Moleculares , Engenharia de Proteínas/métodos , Análise de Sequência de Proteína/métodos
5.
Acta Crystallogr D Struct Biol ; 77(Pt 9): 1183-1196, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473088

RESUMO

Iripin-5 is the main Ixodes ricinus salivary serpin, which acts as a modulator of host defence mechanisms by impairing neutrophil migration, suppressing nitric oxide production by macrophages and altering complement functions. Iripin-5 influences host immunity and shows high expression in the salivary glands. Here, the crystal structure of Iripin-5 in the most thermodynamically stable state of serpins is described. In the reactive-centre loop, the main substrate-recognition site of Iripin-5 is likely to be represented by Arg342, which implies the targeting of trypsin-like proteases. Furthermore, a computational structural analysis of selected Iripin-5-protease complexes together with interface analysis revealed the most probable residues of Iripin-5 involved in complex formation.


Assuntos
Anti-Inflamatórios , Inibidores Enzimáticos , Ixodes/metabolismo , Serpinas , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Células Cultivadas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Eritrócitos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Coelhos , Serpinas/química , Serpinas/isolamento & purificação
6.
Acta Crystallogr D Struct Biol ; 77(Pt 3): 347-356, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645538

RESUMO

Haloalkane dehalogenases (EC 3.8.1.5) are microbial enzymes that catalyse the hydrolytic conversion of halogenated compounds, resulting in a halide ion, a proton and an alcohol. These enzymes are used in industrial biocatalysis, bioremediation and biosensing of environmental pollutants or for molecular tagging in cell biology. The novel haloalkane dehalogenase DpaA described here was isolated from the psychrophilic and halophilic bacterium Paraglaciecola agarilytica NO2, which was found in marine sediment collected from the East Sea near Korea. Gel-filtration experiments and size-exclusion chromatography provided information about the dimeric composition of the enzyme in solution. The DpaA enzyme was crystallized using the sitting-drop vapour-diffusion method, yielding rod-like crystals that diffracted X-rays to 2.0 Šresolution. Diffraction data analysis revealed a case of merohedral twinning, and subsequent structure modelling and refinement resulted in a tetrameric model of DpaA, highlighting an uncommon multimeric nature for a protein belonging to haloalkane dehalogenase subfamily I.


Assuntos
Alteromonadaceae/enzimologia , Proteínas de Bactérias/química , Hidrolases/química , Biodegradação Ambiental , Domínio Catalítico , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Multimerização Proteica , Alinhamento de Sequência
7.
Int J Mol Sci ; 21(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784723

RESUMO

Rutinosidases (α-l-rhamnopyranosyl-(1-6)-ß-d-glucopyranosidases, EC 3.2.1.168, CAZy GH5) are diglycosidases that cleave the glycosidic bond between the disaccharide rutinose and the respective aglycone. Similar to many retaining glycosidases, rutinosidases can also transfer the rutinosyl moiety onto acceptors with a free -OH group (so-called transglycosylation). The recombinant rutinosidase from Aspergillus niger (AnRut) is selectively produced in Pichia pastoris. It can catalyze transglycosylation reactions as an unpurified preparation directly from cultivation. This enzyme exhibits catalytic activity towards two substrates; in addition to rutinosidase activity, it also exhibits ß-d-glucopyranosidase activity. As a result, new compounds are formed by ß-glucosylation or rutinosylation of acceptors such as alcohols or strong inorganic nucleophiles (NaN3). Transglycosylation products with aliphatic aglycones are resistant towards cleavage by rutinosidase, therefore, their side hydrolysis does not occur, allowing higher transglycosylation yields. Fourteen compounds were synthesized by glucosylation or rutinosylation of selected acceptors. The products were isolated and structurally characterized. Interactions between the transglycosylation products and the recombinant AnRut were analyzed by molecular modeling. We revealed the role of a substrate tunnel in the structure of AnRut, which explained the unusual catalytic properties of this glycosidase and its specific transglycosylation potential. AnRut is attractive for biosynthetic applications, especially for the use of inexpensive substrates (rutin and isoquercitrin).


Assuntos
Aspergillus niger/enzimologia , Dissacarídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , Domínio Catalítico , Dissacarídeos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/química , Glicosilação , Hidrólise , Simulação de Acoplamento Molecular , Proteínas Recombinantes/metabolismo , Rutina/química , Rutina/metabolismo , Especificidade por Substrato
8.
J Mol Model ; 26(4): 75, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152736

RESUMO

Photosystem II (PSII) is a multi-subunit pigment-protein complex and is one of several protein assemblies that function cooperatively in photosynthesis in plants and cyanobacteria. As more structural data on PSII become available, new questions arise concerning the nature of the charge separation in PSII reaction center (RC). The crystal structure of PSII RC from cyanobacteria Thermosynechococcus vulcanus was selected for the computational study of conformational changes in photosystem II associated to the charge separation process. The parameterization of cofactors and lipids for classical MD simulation with Amber force field was performed. The parametrized complex of PSII was embedded in the lipid membrane for MD simulation with Amber in Gromacs. The conformational behavior of protein and the cofactors directly involved in the charge separation were studied by MD simulations and QM/MM calculations. This study identified the most likely mechanism of the proton-coupled reduction of plastoquinone QB. After the charge separation and the first electron transfer to QB, the system undergoes conformational change allowing the first proton transfer to QB- mediated via Ser264. After the second electron transfer to QBH, the system again adopts conformation allowing the second proton transfer to QBH-. The reduced QBH2 would then leave the binding pocket.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/enzimologia , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Complexo de Proteína do Fotossistema II/química , Thermosynechococcus
9.
Acta Crystallogr D Struct Biol ; 75(Pt 8): 743-752, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31373573

RESUMO

The haloacid dehalogenase (HAD) superfamily is one of the largest known groups of enzymes and the majority of its members catalyze the hydrolysis of phosphoric acid monoesters into a phosphate ion and an alcohol. Despite the fact that sequence similarity between HAD phosphatases is generally very low, the members of the family possess some characteristic features, such as a Rossmann-like fold, HAD signature motifs or the requirement for Mg2+ ion as an obligatory cofactor. This study focuses on a new hypothetical HAD phosphatase from Thermococcus thioreducens. The protein crystallized in space group P21212, with unit-cell parameters a = 66.3, b = 117.0, c = 33.8 Å, and the crystals contained one molecule in the asymmetric unit. The protein structure was determined by X-ray crystallography and was refined to 1.75 Šresolution. The structure revealed a putative active site common to all HAD members. Computational docking into the crystal structure was used to propose substrates of the enzyme. The activity of this thermophilic enzyme towards several of the selected substrates was confirmed at temperatures of 37°C as well as 60°C.


Assuntos
Hidrolases/química , Monoéster Fosfórico Hidrolases/química , Thermococcus/enzimologia , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X/métodos , Cinética , Modelos Moleculares , Especificidade por Substrato
10.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 324-331, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045561

RESUMO

Haloalkane dehalogenases (HLDs) convert halogenated aliphatic pollutants to less toxic compounds by a hydrolytic mechanism. Owing to their broad substrate specificity and high enantioselectivity, haloalkane dehalogenases can function as biosensors to detect toxic compounds in the environment or can be used for the production of optically pure compounds. Here, the structural analysis of the haloalkane dehalogenase DpcA isolated from the psychrophilic bacterium Psychrobacter cryohalolentis K5 is presented at the atomic resolution of 1.05 Å. This enzyme exhibits a low temperature optimum, making it attractive for environmental applications such as biosensing at the subsurface environment, where the temperature typically does not exceed 25°C. The structure revealed that DpcA possesses the shortest access tunnel and one of the most widely open main tunnels among structural homologs of the HLD-I subfamily. Comparative analysis revealed major differences in the region of the α4 helix of the cap domain, which is one of the key determinants of the anatomy of the tunnels. The crystal structure of DpcA will contribute to better understanding of the structure-function relationships of cold-adapted enzymes.


Assuntos
Proteínas de Bactérias/química , Hidrocarbonetos Halogenados/química , Hidrolases/química , Psychrobacter/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Temperatura Baixa , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Psychrobacter/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Termodinâmica
11.
J Phys Chem B ; 120(22): 4867-77, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27183467

RESUMO

UNLABELLED: Quantum mechanical calculations using the Marcus equation are applied to compare the electron-transfer probability for two distinct crystal structures of the Escherichia coli protein WrbA, an FMN-dependent NAD(P)H: quinone oxidoreductase, with the bound substrate benzoquinone. The calculations indicate that the position of benzoquinone in a new structure reported here and solved at 1.33 Å resolution is more likely to be relevant for the physiological reaction of WrbA than a previously reported crystal structure in which benzoquinone is shifted by ∼5 Å. Because the true electron-acceptor substrate for WrbA is not yet known, the present results can serve to constrain computational docking attempts with potential substrates that may aid in identifying the natural substrate(s) and physiological role(s) of this enzyme. The approach used here highlights a role for quantum mechanical calculations in the interpretation of protein crystal structures.


Assuntos
Benzoquinonas/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Mononucleotídeo de Flavina/química , Teoria Quântica , Proteínas Repressoras/química , Domínio Catalítico , Cristalografia por Raios X , Transporte de Elétrons , Proteínas de Escherichia coli/metabolismo , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo
12.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 7): 1884-97, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25004965

RESUMO

The crystal structure of the novel haloalkane dehalogenase DbeA from Bradyrhizobium elkanii USDA94 revealed the presence of two chloride ions buried in the protein interior. The first halide-binding site is involved in substrate binding and is present in all structurally characterized haloalkane dehalogenases. The second halide-binding site is unique to DbeA. To elucidate the role of the second halide-binding site in enzyme functionality, a two-point mutant lacking this site was constructed and characterized. These substitutions resulted in a shift in the substrate-specificity class and were accompanied by a decrease in enzyme activity, stability and the elimination of substrate inhibition. The changes in enzyme catalytic activity were attributed to deceleration of the rate-limiting hydrolytic step mediated by the lower basicity of the catalytic histidine.


Assuntos
Halogênios/metabolismo , Hidrolases/metabolismo , Sítios de Ligação , Cristalização , Hidrolases/química , Cinética , Análise de Componente Principal
13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 209-17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531456

RESUMO

Haloalkane dehalogenases catalyze the hydrolytic cleavage of carbon-halogen bonds, which is a key step in the aerobic mineralization of many environmental pollutants. One important pollutant is the toxic and anthropogenic compound 1,2,3-trichloropropane (TCP). Rational design was combined with saturation mutagenesis to obtain the haloalkane dehalogenase variant DhaA31, which displays an increased catalytic activity towards TCP. Here, the 1.31 Šresolution crystal structure of substrate-free DhaA31, the 1.26 Šresolution structure of DhaA31 in complex with TCP and the 1.95 Šresolution structure of wild-type DhaA are reported. Crystals of the enzyme-substrate complex were successfully obtained by adding volatile TCP to the reservoir after crystallization at pH 6.5 and room temperature. Comparison of the substrate-free structure with that of the DhaA31 enzyme-substrate complex reveals that the nucleophilic Asp106 changes its conformation from an inactive to an active state during the catalytic cycle. The positions of three chloride ions found inside the active site of the enzyme indicate a possible pathway for halide release from the active site through the main tunnel. Comparison of the DhaA31 variant with wild-type DhaA revealed that the introduced substitutions reduce the volume and the solvent-accessibility of the active-site pocket.


Assuntos
Proteínas de Bactérias/química , Poluentes Ambientais/química , Hidrolases/química , Propano/análogos & derivados , Rhodococcus/química , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Domínio Catalítico , Cristalografia por Raios X , Poluentes Ambientais/metabolismo , Hidrolases/metabolismo , Hidrólise , Modelos Moleculares , Mutagênese , Propano/química , Propano/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Rhodococcus/enzimologia
14.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1748-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23999298

RESUMO

The Escherichia coli protein WrbA, an FMN-dependent NAD(P)H:quinone oxidoreductase, was crystallized under new conditions in the presence of FAD or the native cofactor FMN. Slow-growing deep yellow crystals formed with FAD display the tetragonal bipyramidal shape typical for WrbA and diffract to 1.2 Šresolution, the highest yet reported. Faster-growing deep yellow crystals formed with FMN display an atypical shape, but diffract to only ∼1.6 Šresolution and are not analysed further here. The 1.2 Šresolution structure detailed here revealed only FMN in the active site and no electron density that can accommodate the missing parts of FAD. The very high resolution supports the modelling of the FMN isoalloxazine with a small but distinct propeller twist, apparently the first experimental observation of this predicted conformation, which appears to be enforced by the protein through a network of hydrogen bonds. Comparison of the electron density of the twisted isoalloxazine ring with the results of QM/MM simulations is compatible with the oxidized redox state. The very high resolution also supports the unique refinement of Met10 as the sulfoxide, confirmed by mass spectrometry. Bond lengths, intramolecular distances, and the pattern of hydrogen-bond donors and acceptors suggest the cofactor may interact with Met10. Slow incorporation of FMN, which is present as a trace contaminant in stocks of FAD, into growing crystals may be responsible for the near-atomic resolution, but a direct effect of the conformation of FMN and/or Met10 sulfoxide cannot be ruled out.


Assuntos
Proteínas de Escherichia coli/química , Proteínas Repressoras/química , Cristalização , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , NAD(P)H Desidrogenase (Quinona)/química , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredução , Ligação Proteica , Proteínas Repressoras/metabolismo , Difração de Raios X
15.
Artigo em Inglês | MEDLINE | ID: mdl-23722854

RESUMO

Haloalkane dehalogenases are hydrolytic enzymes with a broad range of potential practical applications such as biodegradation, biosensing, biocatalysis and cellular imaging. Two newly isolated psychrophilic haloalkane dehalogenases exhibiting interesting catalytic properties, DpcA from Psychrobacter cryohalolentis K5 and DmxA from Marinobacter sp. ELB17, were purified and used for crystallization experiments. After the optimization of crystallization conditions, crystals of diffraction quality were obtained. Diffraction data sets were collected for native enzymes and complexes with selected ligands such as 1-bromohexane and 1,2-dichloroethane to resolutions ranging from 1.05 to 2.49 Å.


Assuntos
Proteínas de Bactérias/química , Hidrolases/química , Marinobacter/enzimologia , Psychrobacter/enzimologia , Proteínas de Bactérias/análise , Domínio Catalítico , Cristalografia por Raios X , Hidrolases/análise , Difração de Raios X
16.
Artigo em Inglês | MEDLINE | ID: mdl-23519805

RESUMO

Haloalkane dehalogenases are microbial enzymes that convert a broad range of halogenated aliphatic compounds to their corresponding alcohols by the hydrolytic mechanism. These enzymes play an important role in the biodegradation of various environmental pollutants. Haloalkane dehalogenase LinB isolated from a soil bacterium Sphingobium japonicum UT26 has a relatively broad substrate specificity and can be applied in bioremediation and biosensing of environmental pollutants. The LinB variants presented here, LinB32 and LinB70, were constructed with the goal of studying the effect of mutations on enzyme functionality. In the case of LinB32 (L117W), the introduced mutation leads to blocking of the main tunnel connecting the deeply buried active site with the surrounding solvent. The other variant, LinB70 (L44I, H107Q), has the second halide-binding site in a position analogous to that in the related haloalkane dehalogenase DbeA from Bradyrhizobium elkanii USDA94. Both LinB variants were successfully crystallized and full data sets were collected for native enzymes as well as their complexes with the substrates 1,2-dibromoethane (LinB32) and 1-bromobutane (LinB70) to resolutions ranging from 1.6 to 2.8 Å. The two mutants crystallize differently from each other, which suggests that the mutations, although deep inside the molecule, can still affect the protein crystallizability.


Assuntos
Proteínas de Bactérias/química , Dibrometo de Etileno/química , Hidrocarbonetos Bromados/química , Hidrolases/química , Sphingomonadaceae/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biodegradação Ambiental , Cristalização , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Dibrometo de Etileno/metabolismo , Hidrocarbonetos Bromados/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética , Especificidade por Substrato
17.
Artigo em Inglês | MEDLINE | ID: mdl-23385758

RESUMO

Histidine-containing phosphotransfer proteins from Arabidopsis thaliana (AHP1-5) act as intermediates between sensor histidine kinases and response regulators in a signalling system called multi-step phosphorelay (MSP). AHP proteins mediate and potentially integrate various MSP-based signalling pathways (e.g. cytokinin or osmosensing). However, structural information about AHP proteins and their importance in MSP signalling is still lacking. To obtain a deeper insight into the structural basis of AHP-mediated signal transduction, the three-dimensional structure of AHP2 was determined. The AHP2 coding sequence was cloned into pRSET B expression vector, enabling production of AHP2 fused to an N-terminal His tag. AHP2 was expressed in soluble form in Escherichia coli strain BL21 (DE3) pLysS and then purified to homogeneity using metal chelate affinity chromatography and anion-exchange chromatography under reducing conditions. Successful crystallization in a buffer which was optimized for thermal stability yielded crystals that diffracted to 2.5 Å resolution.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/isolamento & purificação , Arabidopsis/metabolismo , Fosfotransferases/química , Fosfotransferases/isolamento & purificação , Transdução de Sinais , Cristalização , Eletroforese em Gel de Poliacrilamida , Temperatura de Transição , Difração de Raios X
18.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 9): 1119-23, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20823542

RESUMO

Fe-regulated protein D (FrpD) is a Neisseria meningitidis outer membrane lipoprotein that may be involved in the anchoring of the secreted repeat in toxins (RTX) protein FrpC to the outer bacterial membrane. However, the function and biological roles of the FrpD and FrpC proteins remain unknown. Native and selenomethionine-substituted variants of recombinant FrpD43-271 protein were crystallized using the sitting-drop vapour-diffusion method. Diffraction data were collected to a resolution of 2.25 A for native FrpD43-271 protein and to a resolution of 2.00 A for selenomethionine-substituted FrpD43-271 (SeMet FrpD43-271) protein. The crystals of native FrpD43-271 protein belonged to the hexagonal space group P6(2) or P6(4), while the crystals of SeMet FrpD43-271 protein belonged to the primitive orthorhombic space group P2(1)2(1)2(1).


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Lipoproteínas/química , Neisseria meningitidis/química , Cristalização , Cristalografia por Raios X
19.
Biochim Biophys Acta ; 1794(9): 1288-98, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19665595

RESUMO

Two previously reported holoprotein crystal forms of the flavodoxin-like E. coli protein WrbA, diffracting to 2.6 and 2.0 A resolution, and new crystals of WrbA apoprotein diffracting to 1.85 A, are refined and analysed comparatively through the lens of flavodoxin structures. The results indicate that differences between apo- and holoWrbA crystal structures are manifested on many levels of protein organization as well as in the FMN-binding sites. Evaluation of the influence of crystal contacts by comparison of lattice packing reveals the protein's global response to FMN binding. Structural changes upon cofactor binding are compared with the monomeric flavodoxins. Topologically non-equivalent residues undergo remarkably similar local structural changes upon FMN binding to WrbA or to flavodoxin, despite differences in multimeric organization and residue types at the binding sites. Analysis of the three crystal structures described here, together with flavodoxin structures, rationalizes functional similarities and differences of the WrbAs relative to flavodoxins, leading to a new understanding of the defining features of WrbAs. The results suggest that WrbAs are not a remote and unusual branch of the flavodoxin family as previously thought but rather a central member with unifying structural features.


Assuntos
Cristalografia por Raios X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Anabaena/química , Apoproteínas/química , Apoproteínas/metabolismo , Sítios de Ligação , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Flavodoxina/química , Flavodoxina/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica
20.
J Mol Biol ; 392(5): 1339-56, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19577578

RESUMO

Eight mutants of the DhaA haloalkane dehalogenase carrying mutations at the residues lining two tunnels, previously observed by protein X-ray crystallography, were constructed and biochemically characterized. The mutants showed distinct catalytic efficiencies with the halogenated substrate 1,2,3-trichloropropane. Release pathways for the two dehalogenation products, 2,3-dichloropropane-1-ol and the chloride ion, and exchange pathways for water molecules, were studied using classical and random acceleration molecular dynamics simulations. Five different pathways, denoted p1, p2a, p2b, p2c, and p3, were identified. The individual pathways showed differing selectivity for the products: the chloride ion releases solely through p1, whereas the alcohol releases through all five pathways. Water molecules play a crucial role for release of both products by breakage of their hydrogen-bonding interactions with the active-site residues and shielding the charged chloride ion during its passage through a hydrophobic tunnel. Exchange of the chloride ions, the alcohol product, and the waters between the buried active site and the bulk solvent can be realized by three different mechanisms: (i) passage through a permanent tunnel, (ii) passage through a transient tunnel, and (iii) migration through a protein matrix. We demonstrate that the accessibility of the pathways and the mechanisms of ligand exchange were modified by mutations. Insertion of bulky aromatic residues in the tunnel corresponding to pathway p1 leads to reduced accessibility to the ligands and a change in mechanism of opening from permanent to transient. We propose that engineering the accessibility of tunnels and the mechanisms of ligand exchange is a powerful strategy for modification of the functional properties of enzymes with buried active sites.


Assuntos
Hidrolases/química , Hidrolases/metabolismo , Propano/análogos & derivados , Álcoois/metabolismo , Animais , Cloretos/metabolismo , Hidrolases/genética , Cinética , Modelos Químicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Propano/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA