Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 18(10): e3000877, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33048924

RESUMO

Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.


Assuntos
Bacteriófagos/fisiologia , Escherichia coli/virologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , DNA/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Essenciais , Genoma Bacteriano , Mutação/genética , Fenótipo , Reprodutibilidade dos Testes , Supressão Genética
2.
J Mol Biol ; 431(19): 3718-3739, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31325442

RESUMO

Bacteriophages recognize their host cells with the help of tail fiber and tailspike proteins that bind, cleave, or modify certain structures on the cell surface. The spectrum of ligands to which the tail fibers and tailspikes can bind is the primary determinant of the host range. Bacteriophages with multiple tailspike/tail fibers are thought to have a wider host range than their less endowed relatives but the function of these proteins remains poorly understood. Here, we describe the structure, function, and substrate specificity of three tailspike proteins of bacteriophage CBA120-TSP2, TSP3 and TSP4 (orf211 through orf213, respectively). We show that tailspikes TSP2, TSP3 and TSP4 are hydrolases that digest the O157, O77, and O78 Escherichia coli O-antigens, respectively. We demonstrate that recognition of the E. coli O157:H7 host by CBA120 involves binding to and digesting the O157 O-antigen by TSP2. We report the crystal structure of TSP2 in complex with a repeating unit of the O157 O-antigen. We demonstrate that according to the specificity of its tailspikes TSP2, TSP3, and TSP4, CBA120 can infect E. coli O157, O77, and O78, respectively. We also show that CBA120 infects Salmonella enterica serovar Minnesota, and this host range expansion is likely due to the function of TSP1. Finally, we describe the assembly pathway and the architecture of the TSP1-TSP2-TSP3-TSP4 branched complex in CBA120 and its related ViI-like phages.


Assuntos
Bacteriófagos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Cristalografia por Raios X , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Especificidade de Hospedeiro , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Proteólise , Salmonella enterica/virologia , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Front Microbiol ; 7: 1391, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27660625

RESUMO

Virtually all studies of phage infections investigate bacteria growing exponentially in rich media. In nature, however, phages largely encounter non-growing cells. Bacteria entering stationary phase often activate well-studied stress defense mechanisms that drastically alter the cell, facilitating its long-term survival. An understanding of phage-host interactions in such conditions is of major importance from both an ecological and therapeutic standpoint. Here, we show that bacteriophage T4 can efficiently bind to, infect and kill E. coli in stationary phase, both in the presence and absence of a functional stationary-phase sigma factor, and explore the response of T4-infected stationary phase cells to the addition of fresh nutrients 5 or 24 h after that infection. An unexpected new mode of response has been identified. "Hibernation" mode is a persistent but reversible dormant state in which the infected cells make at least some phage enzymes, but halt phage development until appropriate nutrients become available before producing phage particles. Our evidence indicates that the block in hibernation mode occurs after the middle-mode stage of phage development; host DNA breakdown and the incorporation of the released nucleotides into phage DNA indicate that the enzymes of the nucleotide synthesizing complex, under middle-mode control, have been made and assembled into a functional state. Once fresh glucose and amino acids become available, the standard lytic infection process rapidly resumes and concentrations of up to 10(11) progeny phage (an average of about 40 phage per initially present cell) are produced. All evidence is consistent with the hibernation-mode control point lying between middle mode and late mode T4 gene expression. We have also observed a "scavenger" response, where the infecting phage takes advantage of whatever few nutrients are available to produce small quantities of progeny within 2 to 5 h after infection. The scavenger response seems able to produce no more than an average of one phage per originally available cell, and few if any further progeny are produced by cells in this mode even if fresh nutrients are made available later.

4.
Viruses ; 7(12): 6570-89, 2015 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-26703713

RESUMO

Phage therapy, a practice widespread in Eastern Europe, has untapped potential in the combat against antibiotic-resistant bacterial infections. However, technology transfer to Western medicine is proving challenging. Bioinformatics analysis could help to facilitate this endeavor. In the present study, the Intesti phage cocktail, a key commercial product of the Eliava Institute, Georgia, has been tested on a selection of bacterial strains, sequenced as a metagenomic sample, de novo assembled and analyzed by bioinformatics methods. Furthermore, eight bacterial host strains were infected with the cocktail and the resulting lysates sequenced and compared to the unamplified cocktail. The analysis identified 23 major phage clusters in different abundances in the cocktail, among those clusters related to the ICTV genera T4likevirus, T5likevirus, T7likevirus, Chilikevirus and Twortlikevirus, as well as a cluster that was quite distant to the database sequences and a novel Proteus phage cluster. Examination of the depth of coverage showed the clusters to have different abundances within the cocktail. The cocktail was found to be composed primarily of Myoviridae (35%) and Siphoviridae (32%), with Podoviridae being a minority (15%). No undesirable genes were found.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Produtos Biológicos/normas , Enterobacteriaceae/virologia , Genoma Viral , Metagenoma , República da Geórgia , Metagenômica , Myoviridae/classificação , Myoviridae/genética , Podoviridae/classificação , Podoviridae/genética , Siphoviridae/classificação , Siphoviridae/genética
5.
Bacteriophage ; 3(1): e23646, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23819103

RESUMO

Anna Sergeyevna Tikhonenko (1925-2010) is to be remembered for the excellency of her electron microscopical work, particularly with bacteriophages. She published 113 articles and one book, Ultrastructure of Bacterial Viruses (Izdadelstvo Nauka, Moscow 1968; Plenum Press, New York, 1972). It included 134 micrographs and a complete overview of the 316 phages then examined by electron microscopy. Most micrographs were of exceptional quality. This book, a rarity in those days of strict separation of Soviet and Western research, was the first bacteriophage atlas in the literature and presented a morphological classification of phages into five categories of family level, similar to a scheme presented in 1965 by D.E. Bradley (J Royal Microsc Soc 84:257-316). Her book remains one of the fundamentals of phage research.

6.
Arch Virol ; 157(10): 2035-46, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22707043

RESUMO

We suggest a bacteriophage genus, "Viunalikevirus", as a new genus within the family Myoviridae. To date, this genus includes seven sequenced members: Salmonella phages ViI, SFP10 and ΦSH19; Escherichia phages CBA120 and PhaxI; Shigella phage phiSboM-AG3; and Dickeya phage LIMEstone1. Their shared myovirus morphology, with comparable head sizes and tail dimensions, and genome organization are considered distinguishing features. They appear to have conserved regulatory sequences, a horizontally acquired tRNA set and the probable substitution of an alternate base for thymine in the DNA. A close examination of the tail spike region in the DNA revealed four distinct tail spike proteins, an arrangement which might lead to the umbrella-like structures of the tails visible on electron micrographs. These properties set the suggested genus apart from the recently ratified subfamily Tevenvirinae, although a significant evolutionary relationship can be observed.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Myoviridae/classificação , Myoviridae/genética , Bacteriófagos/ultraestrutura , Colífagos/classificação , Colífagos/genética , Colífagos/ultraestrutura , Genoma Viral , Glicosídeo Hidrolases , Myoviridae/ultraestrutura , Filogenia , Fagos de Salmonella/classificação , Fagos de Salmonella/genética , Fagos de Salmonella/ultraestrutura , Análise de Sequência de DNA , Especificidade da Espécie , Proteínas Virais/química , Proteínas Virais/genética , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/genética
7.
Virol J ; 8: 430, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21899740

RESUMO

Phage vB_EcoM_CBA120 (CBA120), isolated against Escherichia coli O157:H7 from a cattle feedlot, is morphologically very similar to the classic phage ViI of Salmonella enterica serovar Typhi. Until recently, little was known genetically or physiologically about the ViI-like phages, and none targeting E. coli have been described in the literature. The genome of CBA120 has been fully sequenced and is highly similar to those of both ViI and the Shigella phage AG3. The core set of structural and replication-related proteins of CBA120 are homologous to those from T-even phages, but generally are more closely related to those from T4-like phages of Vibrio, Aeromonas and cyanobacteria than those of the Enterobacteriaceae. The baseplate and method of adhesion to the host are, however, very different from those of either T4 or the cyanophages. None of the outer baseplate proteins are conserved. Instead of T4's long and short tail fibers, CBA120, like ViI, encodes tail spikes related to those normally seen on podoviruses. The 158 kb genome, like that of T4, is circularly permuted and terminally redundant, but unlike T4 CBA120 does not substitute hmdCyt for cytosine in its DNA. However, in contrast to other coliphages, CBA120 and related coliphages we have isolated cannot incorporate 3H-thymidine (3H-dThd) into their DNA. Protein sequence comparisons cluster the putative "thymidylate synthase" of CBA120, ViI and AG3 much more closely with those of Delftia phage φW-14, Bacillus subtilis phage SPO1, and Pseudomonas phage YuA, all known to produce and incorporate hydroxymethyluracil (hmdUra).


Assuntos
Colífagos , Escherichia coli O157/virologia , Genoma Viral , Proteínas Virais/genética , Animais , Evolução Biológica , Bovinos , Colífagos/química , Colífagos/classificação , Colífagos/genética , Colífagos/metabolismo , Biologia Computacional , Impressões Digitais de DNA , Escherichia coli O157/fisiologia , Microscopia Eletrônica de Transmissão , Filogenia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética , Análise de Sequência de DNA , Timidina/análise , Timidina/metabolismo , Trítio/análise , Trítio/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
8.
Bacteriophage ; 1(1): 15-24, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21687531

RESUMO

In preparing sheep for an in vivo Escherichia coli O157:H7 eradication trial, we found that 20/39 members of a single flock were naturally colonized by O157:H7-infecting phages. Characterization showed these were all one phage type (subsequently named CEV2) infecting 15/16 O157:H7, 7/72 ECOR and common lab strains. Further characterization by PFGE (genome∼120 kb), restriction enzyme digest (DNA appears unmodified), receptor studies (FhuA but not TonB is required for infection) and sequencing (>95% nucleotide identity) showed it is a close relative of the classically studied coliphage T5. Unlike T5, CEV2 infects O157:H7 in vitro, both aerobically and anaerobically, rapidly adsorbing and killing, but resistant mutants regrew within 24 h. When used together with T4-like CEV1 (MOI ∼2 per phage), bacterial killing was longer lasting. CEV2 did not reproduce when co-infecting the same cell as CEV1, presumably succumbing to CEV1's ability to shut off transcription of cytosine-containing DNA. In vivo sheep trials to remove resident O157:H7 showed that a cocktail of CEV2 and CEV1 (∼10(11) total PFU) applied once orally was more effective (>99.9% reduction) than CEV1 alone (∼99%) compared to the untreated phage-free control. Those sheep naturally carrying CEV2, receiving no additional phage treatment, had the lowest O157:H7 levels (∼99.99% reduction). These data suggest that phage cocktails are more effective than individual phage in removing O157:H7 that have taken residence if the phage work in concert with one another and that naturally resident O157:H7-infecting phages may prevent O157:H7 gut colonization and be one explanation for the transient O157:H7 colonization in ruminants.

9.
Foodborne Pathog Dis ; 5(2): 183-91, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18407757

RESUMO

Escherichia coli O157:H7 can live undetected in the gut of food animals and be spread to humans directly and indirectly. Bacteriophages are viruses that prey on bacteria, offering a natural, nonantibiotic method to reduce pathogens from the food supply. Here we show that a cocktail of phages isolated from commercial cattle feces reduced E. coli O157:H7 populations in the gut of experimentally inoculated sheep. A cocktail of phages was used in order to prevent the development of resistance to the phages. In our first in vivo study we found that our cocktail of phages reduced E. coli O157:H7 populations in the feces of sheep (p < 0.05) by 24 hours after phage treatment. Upon necropsy, populations of inoculated E. coli O157:H7 were reduced by phage treatment in both the cecum (p < 0.05) and rectum (p < 0.1). In our second in vivo study, several ratios of phage plaque-forming units (PFU) to E. coli O157:H7 colony-forming units (CFU) were used (0:1, 1:1, 10:1, and 100:1 PFU/CFU) to determine the most efficacious phage dose. A 1:1 ratio of phage to bacteria was found to be more effective (p < 0.05) than either of the higher ratios used (10:1 or 100:1). Ruminal levels of E. coli O157:H7 were not significantly reduced (p > 0.10) in any of the studies due to relatively low inoculated E. coli O157:H7 ruminal populations. Our results demonstrate that phage can be used as a preharvest intervention as part of an integrated pathogen reduction scheme.


Assuntos
Doenças dos Bovinos/prevenção & controle , Colífagos/fisiologia , Infecções por Escherichia coli/veterinária , Escherichia coli O157/virologia , Contaminação de Alimentos/prevenção & controle , Trato Gastrointestinal/microbiologia , Animais , Bacteriólise , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/transmissão , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/transmissão , Fezes/microbiologia , Humanos , Distribuição Aleatória , Rúmen/microbiologia , Ovinos
10.
Appl Environ Microbiol ; 72(9): 6405-10, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16957272

RESUMO

Bacteriophage CEV1 was isolated from sheep resistant to Escherichia coli O157:H7 colonization. In vitro, CEV1 efficiently infected E. coli O157:H7 grown both aerobically and anaerobically. In vivo, sheep receiving a single oral dose of CEV1 showed a 2-log-unit reduction in intestinal E. coli O157:H7 levels within 2 days compared to levels in the controls.


Assuntos
Escherichia coli O157/virologia , Ovinos/microbiologia , Fagos T/isolamento & purificação , Administração Oral , Aerobiose , Anaerobiose , Animais , Escherichia coli O157/isolamento & purificação , Escherichia coli O157/patogenicidade , Feminino , Microbiologia de Alimentos , Microscopia Eletrônica , Probióticos , Fagos T/patogenicidade , Fagos T/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA