Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 250(0): 281-297, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37966107

RESUMO

This study presents a facile synthesis of cadmium-free ternary and quaternary quantum dots (QDs) and their application to light-emitting diode (LED) devices. AgInS2 ternary QDs, developed as a substitute for cadmium chalcogenide QDs, exhibited spectrally broad photoluminescence due to intrinsic defect levels. Our group has successfully achieved narrow band-edge PL by a coating with gallium sulfide shell. Subsequently, an intrinsic difficulty in the synthesis of multinary compound QDs, which often results in unnecessary byproducts, was surmounted by a new approach involving the nucleation of silver sulfide followed by material conversion to the intended composition (silver indium gallium sulfide). By fine-tuning this reaction and bringing the starting material closer to stoichiometric compositional ratios, atom economy was further improved. These QDs have been tested in LED applications, but the standard device encountered a significant defective emission that would have been eliminated by the gallium sulfide shells. This problem is addressed by introducing gallium oxide as a new electron transport layer.

2.
Nanoscale Adv ; 5(24): 7057-7066, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059040

RESUMO

I-III-VI-based semiconductor quantum dots (QDs) have been intensively explored because of their unique controllable optoelectronic properties. Here we report one-pot synthesis of Na-doped Ag-In-Ga-S (AIGS) QDs incorporated in a Ga2O3 matrix. The obtained QDs showed a sharp band-edge photoluminescence peak at 557 nm without a broad-defect site emission. The PL quantum yield (QY) of such QDs was 58%, being much higher than that of AIGS QDs without Na+ doping, 29%. The obtained Na-doped AIGS/Ga2O3 composite particles were used as an emitting layer of green QD light-emitted diodes. A sharp electroluminescence (EL) peak was observed at 563 nm, being similar to that in the PL spectrum of the QDs used. The external quantum efficiency of the device was 0.6%.

3.
J Chem Phys ; 158(16)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37096856

RESUMO

Narrowing the emission peak width and adjusting the peak position play a key role in the chromaticity and color accuracy of display devices with the use of quantum dot light-emitting diodes (QD-LEDs). In this study, we developed multinary Cu-In-Ga-S (CIGS) QDs showing a narrow photoluminescence (PL) peak by controlling the Cu fraction, i.e., Cu/(In+Ga), and the ratio of In to Ga composing the QDs. The energy gap of CIGS QDs was enlarged from 1.74 to 2.77 eV with a decrease in the In/(In+Ga) ratio from 1.0 to 0. The PL intensity was remarkably dependent on the Cu fraction, and the PL peak width was dependent on the In/(In+Ga) ratio. The sharpest PL peak at 668 nm with a full width at half maximum (fwhm) of 0.23 eV was obtained for CIGS QDs prepared with ratios of Cu/(In+Ga) = 0.3 and In/(In+Ga) = 0.7, being much narrower than those previously reported with CIGS QDs, fwhm of >0.4 eV. The PL quantum yield of CIGS QDs, 8.3%, was increased to 27% and 46% without a PL peak broadening by surface coating with GaSx and Ga-Zn-S shells, respectively. Considering a large Stokes shift of >0.5 eV and the predominant PL decay component of ∼200-400 ns, the narrow PL peak was assignable to the emission from intragap states. QD-LEDs fabricated with CIGS QDs surface-coated with GaSx shells showed a red color with a narrow emission peak at 688 nm with a fwhm of 0.24 eV.

4.
ACS Appl Mater Interfaces ; 15(6): 8336-8344, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36732881

RESUMO

Quantum dots (QDs), which have high color purity, are expected to be applied as emitting materials to wide-color-gamut displays. To enable their use as an alternative to Cd-based QDs, it is necessary to improve the properties of QDs composed of low-toxicity materials. Although multielement QDs such as Ag-In-Ga-S are prone to spectrally broad emission from defect sites, a core/shell structure covered with a GaSx shell is expected to enable sharp emission from band-edge transitions. Here, QD light-emitting diodes (QD-LEDs) embedded with Ag-In-Ga-S/GaSx core/shell QDs (AIGS QDs) were fabricated, and their electroluminescence (EL) was observed. The EL spectra from the AIGS QD-LEDs were found to contain a large defect-related emission component not observed in the photoluminescence (PL) spectra of the AIGS QD films. This defect-related emission was caused by electrons injected into defect sites in the QDs. Therefore, the AIGS QDs and the electron injection layer (EIL) of ZnMgO were treated with Ga compounds such as gallium chloride (GaCl3) and gallium tris(N,N'-diethyldithiocarbamate) (Ga(DDTC)3) to improve the luminescence properties of the QD-LEDs. The added Ga compounds effectively compensated for defect sites on the surface of the QDs and suppressed direct electron injection from the EIL into defect sites. As a result, the defect-related emission components in the EL were successfully suppressed, and the EL exhibited a color purity comparable to the PL of the AIGS QD films. The QD-LEDs exhibited EL spectra with a full width at half-maximum of 33 nm, which is extremely sharp for a low-toxicity QD, and the chromaticity coordinates (0.260, 0.695) for green EL were achieved.

5.
Chem Rec ; 23(8): e202200274, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36715491

RESUMO

Metal nanoparticle-based electrocatalysts are widely used in electronic devices, which serve for electrochemical reactions like oxygen reduction reaction, alcohol oxidation and CO2 reduction reaction. These catalyst-dependent reactions are the key of the emerging clean energy systems. Catalyst design and synthesis therefore have received keen attention in past decades. We are motivated to study synthesis approaches of metal nanoparticle-based electrocatalysts using ionic liquids (ILs), which are promising solvents for the nanoparticle preparation because of their unique physicochemical properties. In this personal account, we review our previous and present works on nanoparticle preparation in IL and utilization of the obtained nanoparticles as electrocatalysts.

6.
Phys Chem Chem Phys ; 24(39): 24335-24344, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36177988

RESUMO

AuRh bimetallic alloy nanoparticles (NPs) were successfully prepared by simultaneous sputtering of Au and Rh in a room-temperature ionic liquid (RTIL) of N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4). Bimetallic AuRh alloy NPs of 1-2 nm in size were formed in the RTIL. The alloy composition was controllable by changing the surface areas of Au and Rh plates used as sputtering targets. Loading thus-obtained AuRh NPs on carbon black (CB) powders increased the size of AuRh NPs to ca. 2-8 nm, depending on the Au/Rh ratio. The electrocatalytic activity for oxygen reduction reaction (ORR) of AuRh NP-loaded CB catalysts showed a volcano-type dependence on their composition, in which AuRh NPs with Au surface coverage of 62% exhibited the optimal ORR activity, the specific activity being ca. 5 times higher than that of pure Rh NPs.

7.
Nanoscale Adv ; 4(3): 849-857, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36131838

RESUMO

Ternary and quaternary semiconductor quantum dots (QDs) are candidates for cadmium-free alternatives. Among these, semiconductors containing elements from groups 11, 13, and 16 (i.e., I-III-VI2) are attracting increasing attention since they are direct semiconductors whose bandgap energies in the bulk state are tunable between visible and near infrared. The quaternary system of alloys consisting of silver indium sulfide (AgInS2; bandgap energy: E g = 1.8 eV) and silver gallium sulfide (AgGaS2; E g = 2.4 eV) (i.e., Ag[In x Ga1-x ]S2 (AIGS)) enables bandgap tuning over a wide range of visible light. However, the photoluminescence (PL) quantum yield (10-20%) of AIGS QDs is significantly lower than that of AgInS2 (60-70%). The present study investigates how to improve the PL quantum yield of AIGS QDs via surface ligand engineering. Firstly, the use of a mixture of oleic acid and oleylamine, instead of only oleylamine, as the solvent for the QD synthesis was attempted, and a threefold improvement of the PL quantum yield was achieved. Subsequently, a post-synthetic ligand exchange was performed. Although the addition of alkylphosphine, which is known as an L-type ligand, improved the PL efficiency only by 20%, the use of metal halides, which are categorized as Z-type ligands, demonstrated a twofold to threefold improvement of the PL quantum yield, with the highest value reaching 73.4%. The same procedure was applied to the band-edge emitting core/shell-like QDs that were synthesized in one batch based on our previous findings. While the as-prepared core/shell-like QDs exhibited a PL quantum yield of only 9%, the PL quantum yield increased to 49.5% after treatment with metal halides.

8.
RSC Adv ; 12(31): 20054-20061, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35919618

RESUMO

Photoluminescent carbon dots (CDs) possess several advantages, which include high stability and a non-toxicity that are essential in different applications such as catalysis, drug delivery, and sensors. The presence of heteroatoms modifies their physicochemical characteristics. In this work, a combination of CDs is manufactured utilizing a solvothermal technique using citric acid and thiourea. After separating each section using column chromatography, green and yellow CDs with average diameters of 8.3 and 7.0 nm, respectively, are generated. Next, optical and structural characterizations indicated that the variation in the emission color was caused by differences in surface functional groups rather than particle size. The photoelectrochemical properties are explored by including quinone derivatives and metal ions, which are quenchers for the CDs. The photoluminescence quenching results showed the presence of anionic functional groups on the surface of the CDs. Furthermore, these functional groups interacted strongly with particular types of metal ions, indicating that they may be employed as metal ion sensors.

9.
RSC Adv ; 12(22): 14268-14277, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35558826

RESUMO

Pt-nanoparticle-supported graphene nanoplatelets (Pt/GNPs) and multiwalled carbon nanotube composite (Pt/MWCNTs) electrocatalysts for the oxygen reduction reaction (ORR) can be prepared using a one-pot method through the pyrolytic decomposition of the platinum precursor, platinum(ii) bis(acetylacetonate) (Pt(acac)2) in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C4mim][Tf2N]) or N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)amide ([N1,1,1,3][Tf2N]) ionic liquids (ILs) with the target sp2 carbon support. In this one-pot pyrolysis method, which does not require any reagents to reduce Pt metal precursors or stabilize Pt nanoparticles, Pt nanoparticles are readily immobilized onto the sp2 surface by a thin IL layer formed at the interface, which can work as a binder. We used three types of sp2 carbon materials with different geometric shapes (graphene nanoplatelets with <3 (GNPs-3) and 18-24 layers (GNPs-20) and multiwalled carbon nanotubes (MWCNTs)) to investigate Pt nanoparticle formation and anchoring. All the electrocatalysts, especially Pt/MWCNTs, showed higher durability than the commercial catalyst owing to the combined effect of the IL binder and sp2 carbon materials. Our findings strongly suggest that the original carbon surface properties are also an important factor for creating high-performance ORR electrocatalysts.

10.
Chemistry ; 28(28): e202200167, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35363397

RESUMO

We investigated the adsorption, surface enrichment, ion exchange, and on-surface metathesis of ultrathin mixed IL films on Ag(111). We stepwise deposited 0.5 ML of the protic IL diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]) and 1.0 ML of the aprotic IL 1-methyl-3-octylimidazolium hexafluorophosphate ([C8 C1 Im][PF6 ]) at around 90 K. Thereafter, the resulting layered frozen film was heated to 550 K, and the thermally induced phenomena were monitored in situ by angle-resolved X-ray photoelectron spectroscopy. Between 135 and 200 K, [TfO]- anions at the Ag(111) surface are exchanged by [PF6 ]- anions and enriched together with [C8 C1 Im]+ cations at the IL/vacuum interface. Upon further heating, [dema][PF6 ] and [OMIm][PF6 ] desorb selectively at ∼235 and ∼380 K, respectively. Hereby, a wetting layer of pure [C8 C1 Im][TfO] is formed by on-surface metathesis at the IL/metal interface, which completely desorbs at ∼480 K. For comparison, ion enrichment at the vacuum/IL interface was also studied in macroscopic IL mixtures, where no influence of the solid support is expected.

11.
Chem Commun (Camb) ; 58(10): 1518-1521, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935787

RESUMO

Promising sulfurized polyethylene glycol (SPEG) composite cathodes with a high-rate capability over 3000 mA g-1 at 393 K are fabricated for Al metal anode rechargeable batteries with a 61.0-26.0-13.0 mol% AlCl3-NaCl-KCl inorganic ionic liquid electrolyte. The combination of the SPEG composite cathodes and chloroaluminate inorganic IL can readily enhance the performance of the Al-S batteries, e.g., discharge capacity and cycle stability.

12.
Langmuir ; 37(39): 11552-11560, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34569794

RESUMO

We have studied the adsorption, wetting, growth, and thermal evolution of the protic IL diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]) on Au(111) and Ag(111). Ultrathin films were deposited at room temperature (RT) and at 90 K, and were characterized in situ by angle-resolved X-ray photoelectron spectroscopy. For both surfaces, we observe that independent of temperature, initially, a closed 2D wetting layer forms. While the film thickness does not increase past this wetting layer at RT, at 200 K and below, "moderate" 3D island growth occurs on top of the wetting layer. Upon heating, on Au(111), the [dema][TfO] multilayers desorb at 292 K, leaving an intact [dema][TfO] wetting layer, which desorbs intact at 348 K. The behavior on Ag(111) is much more complex. Upon heating [dema][TfO] deposited at 90 K, the [dema]+ cations deprotonate in two steps at 185 and 305 K, yielding H[TfO] and volatile [dema]0. At 355 K, the formed H[TfO] wetting layer partly desorbs (∼50%) and partly decomposes to form an F-containing surface species, which is stable up to 570 K.

13.
Inorg Chem ; 60(17): 13101-13109, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34410714

RESUMO

Cadmium-free quantum dots (QDs) consisting of silver-indium-gallium-sulfide (AIGS) quaternary semiconductors were successfully synthesized using a metal-dithiocarbamate complex with sufficiently high reactivity to produce metal sulfides. The introduction of a gallium diethyldithiocarbamate precursor decreased the reaction temperature to produce active intermediates, which were subsequently converted into AIGS QDs at 150 °C with silver and indium acetates. Because of the low reaction temperature, AIGS QDs with a tetragonal crystal phase were produced selectively, which favorably generated band-edge emission whose full width at half-maximum is smaller than 40 nm after they were coated with gallium sulfide (GaSy) shells. The compositional indium/gallium ratio was varied by changing the mixing ratio of the precursors used for the synthesis of the AIGS core, and the band-edge photoluminescence (PL) generated from the AIGS/GaSy core/shell QDs was blue-shifted with an increase in the gallium content in the core. Consequently, a pure green emission centered at 518 nm was obtained with a PL quantum yield as high as 68%.

14.
Chem Asian J ; 16(16): 2280-2285, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34128349

RESUMO

An aqueous colloidal dispersion of Pt nanoparticles (NPs) stabilized by fullerenol C60 (OH)12 (Pt:C60 (OH)12 ) was successfully synthesized via liquid-phase chemical reduction. The subsequent pyrolysis of Pt:C60 (OH)12 at different temperatures was conducted to afford Pt-doped carbon with different chemical compositions (Pt:C60n ). X-ray absorption spectroscopy (XAS) and Infrared (IR) absorption spectroscopy and thermogravimetric measurements revealed that the thus-prepared nanocomposite consists of Pt NPs and high valent Pt-C60 (OH)12 complex. One distinct feature of C60 (OH)12 matrix as catalyst support is the suppression of size growth of Pt NPs during the pyrolysis up to 300 °C. Electrochemical experiments using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were performed to find that Pt:C60300 (pyrolyzed at 300 °C) exhibited higher activity than others, that was attributed to the π-extended feature of the as-obtained carbon.

15.
Chem Commun (Camb) ; 56(97): 15297-15300, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33188372

RESUMO

A series of inorganic AlCl3-alkali metal thiocyanate (AMSCN: AM = Li, Na, K) ionic liquids (ILs) are demonstrated as electrolytes for Al electrodeposition and Al-anion rechargeable batteries (AARBs) at 303-363 K. Al deposits with a unique flake nanostructure are obtained in these electrolytes. The assembled AARBs show a stable cyclability over 250 cycles with a reversible capacity of ca. 70 mA h (g-graphite)-1 at 363 K. These inorganic ILs inherit the advantages of conventional chloroaluminate ILs (applicability at near-ambient temperature) and molten salts (cost effectiveness), making them promising electrolyte candidates for industrializable electrochemical Al technologies.

16.
ACS Omega ; 5(40): 25687-25694, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33073094

RESUMO

High-performance PtNi alloy nanoparticle-supported multiwalled carbon nanotube composite (PtNi/MWCNT) electrocatalysts can be prepared via one-pot preparation for oxygen reduction reaction. This route of preparation utilizes the pyrolytic decomposition of metal precursors, such as Pt(acac)2 with Ni precursors, nickel bis(trifluoromethanesulfonyl)amide (Ni[Tf2N]2) or nickel acetylacetonate (Ni(acac)2), in an ionic liquid (IL), N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)amide ([N1,1,1,3][Tf2N]). Currently, there is insufficient information concerning the effect of difference in preparation conditions on the formation mechanism and catalytic activity of PtNi/MWCNT. In this article, a staircase heating process was used to investigate the PtNi alloy nanoparticle formation mechanism and catalytic activity of the resulting PtNi/MWCNT. We found that the alloy formation process, composition, and crystal structure, which directly affect the electrocatalytic activity, strongly depended on the Ni precursor species and heating process. The catalytic performance of certain PtNi/MWCNTs collected during the staircase heating process was better than that of PtNi/MWCNTs produced via the conventional heating process.

17.
Microscopy (Oxf) ; 69(4): 183-195, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32259840

RESUMO

An ionic liquid (IL) is a salt consisting of only cations and anions, which exists in the liquid state at room temperature. Interestingly ILs combine various favorable physicochemical properties, such as negligible vapor pressure, flame resistance, relatively high ionic conductivity, wide electrochemical window, etc. To take advantage of two specific features of ILs, viz. their nonvolatile and antistatic nature, in 2006, Kuwabata, Torimoto et al. reported a milestone study led to current IL-based electron microscopy techniques. Thereafter, several IL-based electron microscopy techniques have been proposed for life science and materials science applications, e.g. pretreatment of hydrous and/or non-electron conductive specimens and in situ/operando observation of chemical reactions occurring in ILs. In this review, the fundamental approaches for making full use of these techniques and their impact on science and technology are introduced.

18.
ChemSusChem ; 13(9): 2354-2363, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32220113

RESUMO

Organic compounds as electrode materials can contribute to sustainability because they are nontoxic and environmentally abundant. The working mechanism during charge-discharge for reported organic compounds as electrode materials is yet to be completely understood. In this study, the structural behavior of 2,5-dimethoxy-1,4-benzoquinone (DMBQ) during charge-discharge is investigated by using NMR spectroscopy, energy-dispersive X-ray spectroscopy, magnetic measurements, operando Raman spectroscopy, and operando X-ray diffraction. For both lithium and sodium systems, DMBQ works as a cathode accompanied with the insertion and deinsertion of Li and Na ions during charge-discharge processes. The DMBQ sample is found to be in two-phase coexistence state at the higher voltage plateau, and the radical monoanion and dianion phases have no long-distance ordering. These structures reversibly change into the original neutral phase with long-distance ordering. These techniques can show the charge-discharge mechanism and the factors that determine the deterioration of organic batteries, thus guiding the design of future high-performance organic batteries.

19.
RSC Adv ; 10(28): 16361-16365, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498842

RESUMO

The dynamics of hot electron transfer from Zn-Ag-In-Te (ZAITe) nanocrystals (NCs) to adsorbed methyl viologen (MV2+) were investigated by transient absorption spectroscopy. The bleaching of the exciton peak in the ZAITe NC-MV2+ complexes evolved faster than that of ZAITe NCs. The hot electron transfer efficiency increased from 45% to 72% with increasing excitation photon energy.

20.
RSC Adv ; 10(48): 28516-28522, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35520071

RESUMO

Nanoparticles composed of molybdenum oxide, MoO x , were successfully prepared by room-temperature ionic liquid (RTIL)/metal sputtering followed by heat treatment. Hydroxyl groups in RTIL molecules retarded the coalescence between MoO x NPs during heat treatment at 473 K in air, while the oxidation state of Mo species in MoO x nanoparticles (NPs) could be modified by changing the heat treatment time. An LSPR peak was observed at 840 nm in the near-IR region for MoO x NPs of 55 nm or larger in size that were annealed in a hydroxyl-functionalized RTIL. Photoexcitation of the LSPR peak of MoO x NPs induced electron transfer from NPs to ITO electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA