Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(10): 5106-5124, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37094066

RESUMO

Prokaryotic Argonaute proteins (pAgos) are homologs of eukaryotic Argonautes (eAgos) and are also thought to play a role in cell defense against invaders. However, pAgos are much more diverse than eAgos and little is known about their functional activities and target specificities in vivo. Here, we describe five pAgos from mesophilic bacteria that act as programmable DNA endonucleases and analyze their ability to target chromosomal and invader DNA. In vitro, the analyzed proteins use small guide DNAs for precise cleavage of single-stranded DNA at a wide range of temperatures. Upon their expression in Escherichia coli, all five pAgos are loaded with small DNAs preferentially produced from plasmids and chromosomal regions of replication termination. One of the tested pAgos, EmaAgo from Exiguobacterium marinum, can induce DNA interference between homologous sequences resulting in targeted processing of multicopy plasmid and genomic elements. EmaAgo also protects bacteria from bacteriophage infection, by loading phage-derived guide DNAs and decreasing phage DNA content and phage titers. Thus, the ability of pAgos to target multicopy elements may be crucial for their protective function. The wide spectrum of pAgo activities suggests that they may have diverse functions in vivo and paves the way for their use in biotechnology.


Assuntos
Proteínas Argonautas , Bactérias , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Bactérias/genética , DNA/metabolismo , Células Procarióticas/metabolismo , Plasmídeos/genética , Eucariotos/genética , Endonucleases/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
2.
Microbiol Spectr ; 11(3): e0414622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102866

RESUMO

Prokaryotic Argonaute (pAgo) proteins are guide-dependent nucleases that function in host defense against invaders. Recently, it was shown that TtAgo from Thermus thermophilus also participates in the completion of DNA replication by decatenating chromosomal DNA. Here, we show that two pAgos from cyanobacteria Synechococcus elongatus (SeAgo) and Limnothrix rosea (LrAgo) are active in heterologous Escherichia coli and aid cell division in the presence of the gyrase inhibitor ciprofloxacin, depending on the host double-strand break repair machinery. Both pAgos are preferentially loaded with small guide DNAs (smDNAs) derived from the sites of replication termination. Ciprofloxacin increases the amounts of smDNAs from the termination region and from the sites of genomic DNA cleavage by gyrase, suggesting that smDNA biogenesis depends on DNA replication and is stimulated by gyrase inhibition. Ciprofloxacin enhances asymmetry in the distribution of smDNAs around Chi sites, indicating that it induces double-strand breaks that serve as a source of smDNA during their processing by RecBCD. While active in E. coli, SeAgo does not protect its native host S. elongatus from ciprofloxacin. These results suggest that pAgo nucleases may help to complete replication of chromosomal DNA by promoting chromosome decatenation or participating in the processing of gyrase cleavage sites, and may switch their functional activities depending on the host species. IMPORTANCE Prokaryotic Argonautes (pAgos) are programmable nucleases with incompletely understood functions in vivo. In contrast to eukaryotic Argonautes, most studied pAgos recognize DNA targets. Recent studies suggested that pAgos can protect bacteria from invader DNA and counteract phage infection and may also have other functions including possible roles in DNA replication, repair, and gene regulation. Here, we have demonstrated that two cyanobacterial pAgos, SeAgo and LrAgo, can assist DNA replication and facilitate cell division in the presence of topoisomerase inhibitors in Escherichia coli. They are specifically loaded with small guide DNAs from the region of replication termination and protect the cells from the action of the gyrase inhibitor ciprofloxacin, suggesting that they help to complete DNA replication and/or repair gyrase-induced breaks. The results show that pAgo proteins may serve as a backup to topoisomerases under conditions unfavorable for DNA replication and may modulate the resistance of host bacterial strains to antibiotics.


Assuntos
Proteínas de Bactérias , Escherichia coli , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Inibidores da Topoisomerase/metabolismo , Bactérias/genética , Ciprofloxacina/farmacologia , DNA/metabolismo , Divisão Celular
3.
Nucleic Acids Res ; 49(7): 4054-4065, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33744962

RESUMO

Argonaute proteins are programmable nucleases that are found in both eukaryotes and prokaryotes and provide defense against invading genetic elements. Although some prokaryotic argonautes (pAgos) were shown to recognize RNA targets in vitro, the majority of studied pAgos have strict specificity toward DNA, which limits their practical use in RNA-centric applications. Here, we describe a unique pAgo nuclease, KmAgo, from the mesophilic bacterium Kurthia massiliensis that can be programmed with either DNA or RNA guides and can precisely cleave both DNA and RNA targets. KmAgo binds 16-20 nt long 5'-phosphorylated guide molecules with no strict specificity for their sequence and is active in a wide range of temperatures. In bacterial cells, KmAgo is loaded with small DNAs with no obvious sequence preferences suggesting that it can uniformly target genomic sequences. Mismatches between the guide and target sequences greatly affect the efficiency and precision of target cleavage, depending on the mismatch position and the nature of the reacting nucleic acids. Target RNA cleavage by KmAgo depends on the formation of secondary structure indicating that KmAgo can be used for structural probing of RNA. These properties of KmAgo open the way for its use for highly specific nucleic acid detection and cleavage.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Planococáceas/enzimologia , RNA Bacteriano/metabolismo , Ligação Proteica , Especificidade por Substrato
4.
Nature ; 587(7835): 632-637, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32731256

RESUMO

Members of the conserved Argonaute protein family use small RNA guides to locate their mRNA targets and regulate gene expression and suppress mobile genetic elements in eukaryotes1,2. Argonautes are also present in many bacterial and archaeal species3-5. Unlike eukaryotic proteins, several prokaryotic Argonaute proteins use small DNA guides to cleave DNA, a process known as DNA interference6-10. However, the natural functions and targets of DNA interference are poorly understood, and the mechanisms of DNA guide generation and target discrimination remain unknown. Here we analyse the activity of a bacterial Argonaute nuclease from Clostridium butyricum (CbAgo) in vivo. We show that CbAgo targets multicopy genetic elements and suppresses the propagation of plasmids and infection by phages. CbAgo induces DNA interference between homologous sequences and triggers DNA degradation at double-strand breaks in the target DNA. The loading of CbAgo with locus-specific small DNA guides depends on both its intrinsic endonuclease activity and the cellular double-strand break repair machinery. A similar interaction was reported for the acquisition of new spacers during CRISPR adaptation, and prokaryotic genomes that encode Ago nucleases are enriched in CRISPR-Cas systems. These results identify molecular mechanisms that generate guides for DNA interference and suggest that the recognition of foreign nucleic acids by prokaryotic defence systems involves common principles.


Assuntos
Proteínas Argonautas/metabolismo , Clostridium butyricum/enzimologia , DNA/metabolismo , Inativação Gênica , Bacteriófagos/genética , Bacteriófagos/fisiologia , Biocatálise , Sistemas CRISPR-Cas , Clostridium butyricum/genética , Clostridium butyricum/virologia , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Exodesoxirribonuclease V/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Homologia de Sequência do Ácido Nucleico
5.
RNA Biol ; 17(5): 677-688, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32013676

RESUMO

Members of the conserved Argonaute (Ago) protein family provide defence against invading nucleic acids in eukaryotes in the process of RNA interference. Many prokaryotes also contain Ago proteins that are predicted to be active nucleases; however, their functional activities in host cells remain poorly understood. Here, we characterize the in vitro and in vivo properties of the SeAgo protein from the mesophilic cyanobacterium Synechococcus elongatus. We show that SeAgo is a DNA-guided nuclease preferentially acting on single-stranded DNA targets, with non-specific guide-independent activity observed for double-stranded substrates. The SeAgo gene is steadily expressed in S. elongatus; however, its deletion or overexpression does not change the kinetics of cell growth. When purified from its host cells or from heterologous E. coli, SeAgo is loaded with small guide DNAs whose formation depends on the endonuclease activity of the argonaute protein. SeAgo co-purifies with SSB proteins suggesting that they may also be involved in DNA processing. The SeAgo-associated small DNAs are derived from diverse genomic locations, with certain enrichment for the proposed sites of chromosomal replication initiation and termination, but show no preference for an endogenous plasmid. Therefore, promiscuous genome sampling by SeAgo does not have great effects on cell physiology and plasmid maintenance.


Assuntos
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Genoma Bacteriano , Genômica , Synechococcus/genética , Synechococcus/metabolismo , Proteínas Argonautas/química , Sequência de Bases , Sítios de Ligação , DNA/química , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Genômica/métodos , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Proteínas Recombinantes , Relação Estrutura-Atividade
6.
Nucleic Acids Res ; 47(11): 5822-5836, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31114878

RESUMO

Argonaute (Ago) proteins are key players in RNA interference in eukaryotes, where they function as RNA-guided RNA endonucleases. Prokaryotic Argonautes (pAgos) are much more diverse than their eukaryotic counterparts but their cellular functions and mechanisms of action remain largely unknown. Some pAgos were shown to use small DNA guides for endonucleolytic cleavage of complementary DNA in vitro. However, previously studied pAgos from thermophilic prokaryotes function at elevated temperatures, which limits their potential use as a tool in genomic applications. Here, we describe two pAgos from mesophilic bacteria, Clostridium butyricum (CbAgo) and Limnothrix rosea (LrAgo), that act as DNA-guided DNA nucleases at physiological temperatures. In comparison with previously studied pAgos, CbAgo and LrAgo do not show strong preferences for the 5'-nucleotide in guide DNA and can use not only 5'-phosphorylated but also 5'-hydroxyl DNA guides. Both CbAgo and LrAgo can tolerate guide/target mismatches in the seed region, but are sensitive to mismatches in the 3'-guide region. Both pAgos can perform programmable endonucleolytic cleavage of double-stranded DNA substrates, showing enhanced activity at AT-rich regions and at elevated temperatures. The biochemical characterization of mesophilic pAgo proteins paves the way for their use for DNA manipulations both in vitro and in vivo.


Assuntos
Proteínas Argonautas/metabolismo , Bactérias/metabolismo , Clostridium butyricum/metabolismo , Desoxirribonucleases/metabolismo , DNA/metabolismo , Clivagem do DNA , DNA de Cadeia Simples/química , Endonucleases/metabolismo , Eucariotos/genética , Células Eucarióticas/metabolismo , Cinética , Fosforilação , Plasmídeos/metabolismo , Células Procarióticas/metabolismo , Interferência de RNA
7.
Int J Mol Sci ; 19(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518034

RESUMO

Protein biosynthesis in mitochondria is organized in a bacterial manner. However, during evolution, mitochondrial translation mechanisms underwent many organelle-specific changes. In particular, almost all mitochondrial translation factors, being orthologous to bacterial proteins, are characterized by some unique elements of primary or secondary structure. In the case of the organellar initiation factor 3 (IF3), these elements are several dozen amino acids long N- and C-terminal extensions. This study focused on the terminal extensions of baker's yeast mitochondrial IF3, Aim23p. By in vivo deletion and complementation analysis, we show that at least one extension is necessary for Aim23p function. At the same time, human mitochondrial IF3 is fully functional in yeast mitochondria even without both terminal extensions. While Escherichia coli IF3 itself is poorly active in yeast mitochondria, adding Aim23p terminal extensions makes the resulting chimeric protein as functional as the cognate factor. Our results show that the terminal extensions of IF3 have evolved as the "adaptors" that accommodate the translation factor of bacterial origin to the evolutionary changed protein biosynthesis system in mitochondria.


Assuntos
Evolução Molecular , Mitocôndrias/metabolismo , Fator de Iniciação 3 em Procariotos/química , Fator de Iniciação 3 em Procariotos/metabolismo , Escherichia coli/metabolismo , Humanos , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
PeerJ ; 6: e5620, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245939

RESUMO

The processes of association and dissociation of ribosomal subunits are of great importance for the protein biosynthesis. The mechanistic details of these processes, however, are not well known. In bacteria, upon translation termination, the ribosome dissociates into subunits which is necessary for its further involvement into new initiation step. The dissociated state of the ribosome is maintained by initiation factor 3 (IF3) which binds to free small subunits and prevents their premature association with large subunits. In this work, we have exchanged IF3 in Escherichia coli cells by its ortholog from Saccharomyces cerevisiae mitochondria (Aim23p) and showed that yeast protein cannot functionally substitute the bacterial one and is even slightly toxic for bacterial cells. Our in vitro experiments have demonstrated that Aim23p does not split E. coli ribosomes into subunits. Instead, it fixes a state of ribosomes characterized by sedimentation coefficient about 60S which is not a stable structure but rather reflects a shift of dynamic equilibrium between associated and dissociated states of the ribosome. Mitochondria-specific terminal extensions of Aim23p are necessary for "60S state" formation, and molecular modeling results point out that these extensions might stabilize the position of the protein on the bacterial ribosome.

9.
Sci Rep ; 6: 18749, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728900

RESUMO

The mitochondrial genome almost exclusively encodes a handful of transmembrane constituents of the oxidative phosphorylation (OXPHOS) system. Coordinated expression of these genes ensures the correct stoichiometry of the system's components. Translation initiation in mitochondria is assisted by two general initiation factors mIF2 and mIF3, orthologues of which in bacteria are indispensible for protein synthesis and viability. mIF3 was thought to be absent in Saccharomyces cerevisiae until we recently identified mitochondrial protein Aim23 as the missing orthologue. Here we show that, surprisingly, loss of mIF3/Aim23 in S. cerevisiae does not indiscriminately abrogate mitochondrial translation but rather causes an imbalance in protein production: the rate of synthesis of the Atp9 subunit of F1F0 ATP synthase (complex V) is increased, while expression of Cox1, Cox2 and Cox3 subunits of cytochrome c oxidase (complex IV) is repressed. Our results provide one more example of deviation of mitochondrial translation from its bacterial origins.


Assuntos
Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Carbono/metabolismo , Respiração Celular , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Ribossomos Mitocondriais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência
10.
BMC Evol Biol ; 14(1): 35, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24564225

RESUMO

BACKGROUND: The GTPase eEF1A is the eukaryotic factor responsible for the essential, universal function of aminoacyl-tRNA delivery to the ribosome. Surprisingly, eEF1A is not universally present in eukaryotes, being replaced by the paralog EFL independently in multiple lineages. The driving force behind this unusually frequent replacement is poorly understood. RESULTS: Through sequence searching of genomic and EST databases, we find a striking association of eEF1A replacement by EFL and loss of eEF1A's guanine exchange factor, eEF1Bα, suggesting that EFL is able to spontaneously recharge with GTP. Sequence conservation and homology modeling analyses indicate several sequence regions that may be responsible for EFL's lack of requirement for eEF1Bα. CONCLUSIONS: We propose that the unusual pattern of eEF1A, eEF1Bα and EFL presence and absence can be explained by a ratchet-like process: if either eEF1A or eEF1Bα diverges beyond functionality in the presence of EFL, the system is unable to return to the ancestral, eEF1A:eEFBα-driven state.


Assuntos
Eucariotos/genética , Evolução Molecular , Fatores de Alongamento de Peptídeos/genética , Sequência de Aminoácidos , Archaea/genética , Bactérias/genética , Sequência Conservada , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência
11.
Biochimie ; 100: 132-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23954798

RESUMO

The highly streamlined mitochondrial genome encodes almost exclusively a handful of transmembrane components of the respiratory chain complex. In order to ensure the correct assembly of the respiratory chain, the products of these genes must be produced in the correct stoichiometry and inserted into the membrane, posing a unique challenge to the mitochondrial translational system. In this review we describe the proteins orchestrating mitochondrial translation initiation: bacterial-like general initiation factors mIF2 and mIF3, as well as mitochondria-specific components - mRNA-specific translational activators and mRNA-nonspecific accessory initiation factors. We consider how the fast rate of evolution in these organelles has not only created a system that is divergent from that of its bacterial ancestors, but has led to a huge diversity in lineage specific mechanistic features of mitochondrial translation initiation among eukaryotes.


Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/genética , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , Sequência de Aminoácidos , Evolução Biológica , Transporte de Elétrons/genética , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Fator de Iniciação 2 em Procariotos/genética , Fator de Iniciação 2 em Procariotos/metabolismo , Fator de Iniciação 3 em Procariotos/genética , Fator de Iniciação 3 em Procariotos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
12.
Nucleic Acids Res ; 40(13): 6122-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22457064

RESUMO

Mitochondrial translation is essentially bacteria-like, reflecting the bacterial endosymbiotic ancestry of the eukaryotic organelle. However, unlike the translation system of its bacterial ancestors, mitochondrial translation is limited to just a few mRNAs, mainly coding for components of the respiratory complex. The classical bacterial initiation factors (IFs) IF1, IF2 and IF3 are universal in bacteria, but only IF2 is universal in mitochondria (mIF2). We analyse the distribution of mitochondrial translation initiation factors and their sequence features, given two well-propagated claims: first, a sequence insertion in mitochondrial IF2 (mIF2) compensates for the universal lack of IF1 in mitochondria, and secondly, no homologue of mitochondrial IF3 (mIF3) is identifiable in Saccharomyces cerevisiae. Our comparative sequence analysis shows that, in fact, the mIF2 insertion is highly variable and restricted in length and primary sequence conservation to vertebrates, while phylogenetic and in vivo complementation analyses reveal that an uncharacterized S. cerevisiae mitochondrial protein currently named Aim23p is a bona fide evolutionary and functional orthologue of mIF3. Our results highlight the lineage-specific nature of mitochondrial translation and emphasise that comparative analyses among diverse taxa are essential for understanding whether generalizations from model organisms can be made across eukaryotes.


Assuntos
Fator de Iniciação 3 em Eucariotos/genética , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência Conservada , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/classificação , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/classificação , Teste de Complementação Genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/classificação , Dados de Sequência Molecular , Filogenia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Alinhamento de Sequência
13.
Sci Rep ; 1: 195, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355710

RESUMO

Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole.


Assuntos
Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Apoptose , Transporte Biológico , Difusão , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Lasers , Luz , Substâncias Macromoleculares , Oxigênio/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA