Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Future Med Chem ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629440

RESUMO

Aim: The aim of this study was the synthesis of steroid compounds with heterocyclic rings and good anticancer properties. Materials & methods: The synthesis, in silico and in vitro anticancer testing of novel pyridin-2-yl estra-1,3,5(10)-triene derivatives was performed. Results: All synthesized compounds have shown promising results for, antiproliferative activity, relative binding affinities for the ligand binding domains of estrogen receptors α, ß and androgen receptor, aromatase binding potential, and inhibition of AKR1C3 enzyme. Conclusion: 3-Benzyloxy (17E)-pycolinilidene derivative 9 showed the best antitumor potential against MDA-MB-231 cell line, an activity that can be explained by its moderate inhibition of AKR1C3. Molecular docking simulation indicates that it binds to AKR1C3 in a very similar orientation and geometry as steroidal inhibitor EM1404.

2.
Curr Top Med Chem ; 23(9): 791-815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36703585

RESUMO

Parasitic diseases affect millions of people and animals, predominantly in the tropics, including visitors to tropical countries and other areas. Efficient and low-cost treatments for infections caused by various parasites are not yet available. Antiparasitic drugs have some drawbacks, such as toxicity and the development of resistance by parasites. This has motivated many researchers to focus on the discovery of safe, effective and affordable antiparasitic drugs, both among drugs already available for other diseases and new compounds synthesized or isolated from natural sources. Furthermore, steroid and triterpenoid compounds attract the attention of pharmacologists, chemists and biochemists owing to their broad application in the treatment of various diseases. Isolation of steroid and triterpenoid compounds from natural sources with antiparasitic efficacy is an attractive choice for scientists. On the other hand, these compounds can be transformed into more potent forms by modifying the basic skeleton. This review presents a collection of isolated and synthesized steroid and triterpenoid compounds from 2018 to 2021 that have been reported to be effective against certain parasitic protozoa and helminths. A total of 258 compounds have been identified with antimalarial, antitrypanosomal, antileishmanial, anti-Toxoplasma, and/or anthelmintic activity. The described investigations of antiparasitic compounds may be helpful for further drug development.


Assuntos
Anti-Helmínticos , Antineoplásicos , Antiprotozoários , Triterpenos , Trypanosoma cruzi , Animais , Antiparasitários/farmacologia , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Anti-Helmínticos/farmacologia , Esteroides/farmacologia , Antineoplásicos/farmacologia , Triterpenos/farmacologia
3.
Steroids ; 188: 109118, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183814

RESUMO

New steroidal D-homo androstane derivative, 5α,6ß-dibromo-3ß-hydroxy-17-oxa-17a-homoandrostan-16-one was synthesized and its structure was confirmed by NMR spectroscopy. In silico ADME properties of this compound were assessed using the SwissADME online prediction tool. Six human cancer cell lines (MDA-MB-231, MCF-7, PC3, HT-29, HeLa, and A549) and one human noncancerous cell line (MRC-5) were used for in vitro cytotoxicity testing. Novel steroidal dibromide was also tested for relative binding affinity for the ligand binding domain of estrogen receptor α and ß or the androgen receptor using a published assay in yeast cells. Ligand binding domains of each steroid receptor were expressed in-frame with yellow fluorescent protein in yeast and the fluorescence intensity changes upon addition of test compound was measured. The new compound showed selective cytotoxic activity against HT-29 (colon adenocarcinoma) and A549 (lung adenocarcinoma) cell lines, as well as the potential to induce apoptosis in HT-29 cells, while results obtained from ligand binding assay in yeast suggested a lack of significant estrogenic or androgenic properties.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Humanos , Lactonas/farmacologia , Linhagem Celular Tumoral , Saccharomyces cerevisiae , Ligantes , Esteroides/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células
4.
Colloids Surf B Biointerfaces ; 216: 112597, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35636320

RESUMO

Chemically modified steroids have a long history as anti-neoplastic drugs. Incorporation of a lactone moiety in the steroid nucleus, as in previously obtained 3ß-acetoxy-17-oxa-17a-homoandrost-5-en-16-one (A) and 3ß-hidroxy-17-oxa-17a-homoandrost-5-en-16-one (B), often results in enhanced anticancer properties. In this work, chitosan-based (Ch) nanoparticles were created and loaded with potent anticancer steroidal compounds, A and B. Changes to hormone receptor binding and cytotoxicity were then measured. In agreement with our previous results for A and B, A- and B-loaded Ch displayed cytotoxic properties against cancer cell lines. Both A-Ch and B-Ch showed activity toward estrogen negative breast cancer (MDA-MB-231) and androgen negative prostate cancer cell lines (PC-3). Greater selectivity toward cancer cells versus healthy lung fibroblast (MRC-5) was observed for B-Ch particles. Cell viability and cytotoxicity measurements after a recovery period indicate more robust recovery of healthy cells versus malignant cells. Compounds A and B or their Ch-encapsulated forms were shown to have negligible affinity for the ligand binding domain of estrogen receptor ß or the androgen receptor in a fluorescent yeast screen, suggesting a lack of estrogenicity and androgenicity. Steroid-loaded chitosan nanoparticles display strong cytotoxicity towards MDA-MB-231 and PC-3 with a lack of hormone activity, indicating their safety and efficacy.


Assuntos
Neoplasias da Mama , Quitosana , Nanopartículas , Neoplasias da Próstata , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Quitosana/química , Hormônios , Humanos , Lactonas , Masculino , Esteroides/química , Esteroides/farmacologia
5.
J Steroid Biochem Mol Biol ; 218: 106061, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031429

RESUMO

Marine soft corals are known as a good source of biologically active compounds, among which a large number of steroid compounds are identified. Structures and activities of these compounds have been used in drug discovery and development. From 2015 to 2020, 179 new steroid compounds were isolated from soft corals and structurally characterized. In this review, we report the structural classification and bioactivities of these compounds. The largest group of steroids from soft corals are hydroxysteroids, while the most common biological activity is anticancer. Besides, anticancer hydroxysteroids from soft corals exhibit anti-inflammatory and antibacterial activity. Unlike anticancer and antibacterial activity that can be observed in a number of steroid classes, antioxidant activity and antileishmanial effect were observed only in 19-oxygenated steroids, antiviral activity in pregnane-type steroids and spirosteroids, immunosuppressive activity in epoxy- and epidioxysteroids, and antibacterial activity in two steroid classes, hydroxysteroids and ketosteroids. This systematically analyzed link between the structure and activity of natural marine steroids is a good starting point for future drug design.


Assuntos
Antozoários , Animais , Antozoários/química , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Hidroxiesteroides , Esteroides/química , Esteroides/farmacologia
6.
Bioorg Med Chem ; 30: 115935, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33340938

RESUMO

A series of 5,6-modified steroidal d-homo lactones, comprising of halogenated and/or oxygenated derivatives, was synthesized and evaluated for potential anticancer properties. Preparation of many of these compounds involved investigating alternative synthetic pathways. In silico ADME testing was performed for both novel and some previously synthesized compounds. Calculated physicochemical properties were in accordance with the Lipinski, Veber, Egan, Ghose and Muegge criteria, suggesting the potential of these molecules as orally active agents. Cytotoxicity of the synthesized steroid derivatives was tested on six tumor and one normal human cell line. None of the investigated derivatives was toxic to non-cancerous MRC-5 control cells. Most of the compounds showed significant cytotoxicity against the treated cancer cell lines. Most notably, the 3ß,5α,6ß-trihydroxy derivative exhibited strong cytotoxicity against multiple cell lines (MCF-7, MDA-MB-231 and HT-29), with the highest effect observed for lung adenocarcinoma (A549) cells, for which this steroid was more cytotoxic than all of the three commercial chemotherapeutic agents used as reference compounds. Molecular docking suggests the 3ß,5α,6ß-trihydroxy derivative could bind the EGFR tyrosine kinase domain with high affinity, providing a potential mechanism for its cytotoxicity via inhibition of EGFR signaling. The most active compounds were further studied for their potential to induce apoptosis by the double-staining fluorescence method; where the 5α,6ß-dibromide, 5α,6ß-dichloride and 3ß,5α,6ß-triol induced apoptotic changes in all three treated cell lines: MDA-MB-231, HT-29 and A549. To predict interactions with nuclear steroidal receptors, affinity for the ligand binding domains of ERα, ERß and AR was measured using a yeast-based fluorescence assay. The 5ß,6ß-epoxide, dibromide and 5α-hydroxy-3,6-dioxo derivatives showed affinity for ERα, while the 5α-fluoro-6ß-hydroxy and 3ß-acetoxy-5α,6ß-dihydroxy derivatives were identified as ERß ligands. None of the tested compounds showed affinity for AR. Structure-activity relationships of selected compounds were also examined.


Assuntos
Antineoplásicos/farmacologia , Lactonas/farmacologia , Oxigênio/farmacologia , Esteroides/farmacologia , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Halogenação , Humanos , Lactonas/síntese química , Lactonas/química , Modelos Moleculares , Estrutura Molecular , Oxigênio/química , Esteroides/síntese química , Esteroides/química , Relação Estrutura-Atividade
7.
Steroids ; 157: 108596, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32068078

RESUMO

This paper describes the synthesis of a new A-homo lactam D-homo lactone androstane derivative from dehydroepiandrosterone. To evaluate the impact of the introduction of nitrogen in the parental scaffold on biological activity, a new androstane enamide-type lactam derivative was prepared and characterized. The new compound as well as starting compounds were screened for cytotoxic, anti-angiogenic and anti-inflammatory activities using several human cancer cell lines (MCF-7, MDA-MB-231, PC3, CEM, G-361, HeLa), endothelial (HUVEC) and non-tumour (MRC-5 and BJ) cell lines. Strong cytotoxic and anti-inflammatory activity with a broad therapeutical window was demonstrated by the A-homo lactam D-homo lactone androstane derivative. The induction of apoptosis in treated PC3 cultures was confirmed using apoptotic morphology screening and a fluorescent double-staining method. New A-homo lactam D-homo lactone androstane derivative induced apoptosis more than the tested reference compounds, Formestane and Doxorubicin. An in silico ADME analysis showed that the compounds possess drug-like properties.


Assuntos
Androstanos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Selectina E/antagonistas & inibidores , Lactonas/farmacologia , Androstanos/química , Androstanos/isolamento & purificação , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Selectina E/biossíntese , Humanos , Lactonas/química , Lactonas/isolamento & purificação , Conformação Molecular , Imagem Óptica , Relação Estrutura-Atividade
8.
Steroids ; 135: 101-107, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29604312

RESUMO

Steroidal 16,17-seco-16,17a-dinitriles possessing 4-ene-3,6-dione (3), 6-methylene-4-en-3-one (5), (6E)-hydroxyimino-4-en-3ß-ol (9) or (6E)-hydroxyimino-4-en-3-one (10) moiety were synthesized starting from 3ß-acetoxy-16,17-secoandrost-4-ene-16,17a-dinitrile (1). Antiproliferative activity of the newly synthesized compounds, as well as previously synthesized 3-oxo-16,17-secoandrosta-1,4-diene-16,17a-dinitrile (VII), was tested in vitro. Compound 9 displayed submicromolar antiproliferative activity against human cervical carcinoma (HeLa) cells (IC50 0.48 µM), and compounds 3 and 10 expressed strong inhibitory potential against HeLa cells (IC50 4.31 µM and 2.64 µM, respectively). Also, compound 10 was effective in inhibiting estrogen hormone-independent (MDA-MB-231) cells (IC50 2.78 µM). All tested compounds had no influence on the proliferation of healthy cells (MRC-5). Since MDA-MB-231 breast cancer cells and HeLa cervical cancer cells were most sensitive to treatment by 16,17-seco-16,17a-dinitriles, apoptosis induction after treatment by compounds 3, VII, 9 and 10 was studied in these cells, to reveal the mechanism underlying cell growth inhibition. All tested compounds significantly induced apoptosis in both treated cell lines, which was evident from results obtained by a double AO-EB staining test and quantified by counting cells with apoptotic morphology after staining with Giemsa dye. Among all tested substances, (6E)-hydroxyimino-4-en-3-one derivative 10 expressed the most proapoptotic activity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Nitrilas/química , Esteroides/química , Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA