Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 980427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204062

RESUMO

Cuticle is the first layer protecting plants against external biotic and abiotic factors and is responsive to climatic factors as well as determined by genetic adaptations. In this study, the chemical composition of bilberry fruit cuticular wax was investigated through a latitudinal gradient from Latvia (56°N 24°E) through Finland (65°N 25°E) to northern Norway (69°N 18°E) in two seasons 2018 and 2019. Changes in the major cuticular wax compounds, including triterpenoids, fatty acids, alkanes, aldehydes, ketones, and primary alcohols, were detected by GC-MS analysis. Generally, a decreasing trend in the proportion of triterpenoids from southern to northern latitudes, accompanied with an increase in proportion of fatty acids, aldehydes, and alkanes, in bilberry fruit cuticular wax was observed. A correlation analysis between climatic factors with proportion of wax compounds indicated that temperature was the main factor affecting the cuticular wax composition in bilberries. A controlled phytotron experiment with southern and northern bilberry ecotypes confirmed the major effect of temperature on bilberry fruit cuticular wax load and composition. Elevated temperature increased wax load most in berries of northern ecotypes. The level of triterpenoids was higher, while levels of fatty acids and alkanes were lower, in wax of bilberry fruits ripened at 18°C compared to 12°C in both northern and southern ecotypes. Based on our results, it can be postulated that the predicted increase in temperature due to climate change leads to alterations in fruit cuticular wax load and composition. In northern ecotypes, the alterations were especially evident.

2.
Biology (Basel) ; 11(5)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35625449

RESUMO

The main intention of the present work was to investigate the ability of cellulose-degrading enzymes (C-DE) to release fatty acids (FAs) from complex matrices of cereal by-products during enzymatic hydrolysis (EH). For this purpose, three types of cereal bran (CB), i.e., wheat, rye, and oat, were used as lignocellulose substrates for three commercially available hydrolytic enzymes, i.e., Viscozyme L, Viscoferm, and Celluclast 1.5 L. The yield and composition of FAs after EH were assessed and compared with those obtained after either conventional Soxhlet extraction or after alkaline-assisted hydrolysis (A-AH) with 10% KOH in 80% MeOH and subsequent liquid-liquid extraction. The experimental results demonstrated that up to 6.3% and 43.7% higher total FA yield can be achieved by EH of rye bran using Celluclast 1.5 L than by A-AH and Soxhlet extraction, respectively. However, the application of Viscoferm for EH of wheat bran ensured up to 7.7% and 13.4% higher total FA yield than A-AH and Soxhlet extraction, respectively. The concentration of essential linolenic acid (C18:3) in lipids extracted after EH of rye bran with Celluclast 1.5 L was up to 24.4% and 57.0% higher than in lipids recovered by A-AH and Soxhlet extraction, respectively. In turn, the highest content of linolenic acid in wheat bran lipids was observed after EH with Viscoferm and Viscozyme L, ensuring 17.0% and 13.6% higher yield than after A-AH, respectively. SEM analysis confirmed substantial degradation of the CB matrix promoted by the ability of C-DE to act specifically on glycosidic bonds in cellulose and on xylosidic bonds in arabinoxylans, arabinans, and other arabinose-containing hemicelluloses. Structural alterations in cell integrity greatly contributed to the release of bound FAs and their better transfer into the extraction solvent. It has been shown that the proposed process of EH can be used for the efficient release of FAs from the CB matrix more sustainably and with a safer profile, thereby conveying greener production of FAs for certain purposes.

3.
Antibiotics (Basel) ; 11(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35453213

RESUMO

The purpose of the present investigation was to compare the antibacterial activity of six commercial and lab-scale extracted essential oils (EOs) alone or in combination with caprylic acid (CA) and sodium chloride (NaCl) against faecal Escherichia coli with and without extended-spectrum beta-lactamase (ESBL) encoding genes, and of isolates classified as multidrug-resistant (MDR). Gas chromatography−mass spectrometry (GC−MS) was used for the analysis of chemical composition of EOs, while the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were carried out to elucidate the antibacterial activity of non-supplemented and supplemented EOs against different resistance levels of E. coli strains. The main compounds in commercial EOs were aromatic monoterpenoids (30−56%) and p-cymene (8−35%), while the main compounds in the lab-scale EOs were aromatic monoterpenoids (12−37%) and γ-terpinene (18−22%). Commercial EOs exhibited superior inhibitory activity of E. coli in comparison to lab-scale produced EOs. Antibacterial activity of EOs was significantly enhanced by enrichment of the EOs with NaCl (p < 0.001) or CA (p = 0.012). Most of the non-supplemented EOs exhibited lower activity against MDR and ESBL producing E. coli. In contrast, EOs supplemented with CA and especially NaCl was equally effective against ESBL and non-ESBL as well as MDR and non-MDR E. coli. It was found that supplementation of EOs with NaCl could enhance the antibacterial activity towards ESBL and MDR E. coli isolates. However, additional studies are needed to clarify the potential risks of developing resistance.

4.
Foods ; 10(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34945607

RESUMO

Biorefining by enzymatic hydrolysis (EH) of lignocellulosic waste material due to low costs and affordability has received enormous interest amongst scientists as a potential strategy suitable for the production of bioactive ingredients and chemicals. In this study, a sustainable and eco-friendly approach to extracting bound ferulic acid (FA) was demonstrated using single-step EH by a mixture of lignocellulose-degrading enzymes. For comparative purposes of the efficiency of EH, an online extraction and analysis technique using supercritical fluid extraction-supercritical fluid chromatography-mass spectrometry (SFE-SFC-MS) was performed. The experimental results demonstrated up to 369.3 mg 100 g-1 FA release from rye bran after 48 h EH with Viscozyme L. The EH of wheat and oat bran with Viscoferm for 48 h resulted in 255.1 and 33.5 mg 100 g-1 of FA, respectively. The release of FA from bran matrix using supercritical fluid extraction with carbon dioxide and ethanol as a co-solvent (SFE-CO2-EtOH) delivered up to 464.3 mg 100 g-1 of FA, though the extractability varied depending on the parameters used. The 10-fold and 30-fold scale-up experiments confirmed the applicability of EH as a bioprocessing method valid for the industrial scale. The highest yield of FA in both scale-up experiments was obtained from rye bran after 48 h of EH with Viscozyme L. In purified extracts, the absence of xylose, arabinose, and glucose as the final degradation products of lignocellulose was proven by high-performance liquid chromatography with refractive index detection (HPLC-RID). Up to 94.0% purity of FA was achieved by solid-phase extraction (SPE) using the polymeric reversed-phase Strata X column and 50% EtOH as the eluent.

5.
Foods ; 10(4)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916453

RESUMO

Historically Triticum aestívum L. and Secale cereále L. are widely used in the production of bakery products. From the total volume of grain cultivated, roughly 85% is used for the manufacturing of flour, while the remaining part is discarded or utilized rather inefficiently. The limited value attached to bran is associated with their structural complexity, i.e., the presence of cellulose, hemicellulose, and lignin, which makes this material suitable mostly as a feed supplement, while in food production its use presents a challenge. To valorize these materials to food and pharmaceutical applications, additional pre-treatment is required. In the present study, an effective, sustainable, and eco-friendly approach to ferulic acid (FA) production was demonstrated through the biorefining process accomplished by non-starch polysaccharides degrading enzymes. Up to 11.3 and 8.6 g kg-1 of FA was released from rye and wheat bran upon 24 h enzymatic hydrolysis with multi-enzyme complex Viscozyme® L, respectively.

6.
Food Chem ; 354: 129517, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33756336

RESUMO

In this study, cuticular wax load, its chemical composition, and biosynthesis, was studied during development of wild type (WT) bilberry fruit and its natural glossy type (GT) mutant. GT fruit cuticular wax load was comparable with WT fruits. In both, the proportion of triterpenoids decreased during fruit development concomitant with increasing proportions of total aliphatic compounds. In GT fruit, a higher proportion of triterpenoids in cuticular wax was accompanied by a lower proportion of fatty acids and ketones compared to WT fruit as well as lower density of crystalloid structures on berry surfaces. Our results suggest that the glossy phenotype could be caused by the absence of rod-like structures in GT fruit associated with reduction in proportions of ketones and fatty acids in the cuticular wax. Especially CER26-like, FAR2, CER3-like, LTP, MIXTA, and BAS genes showed fruit skin preferential expression patterns indicating their role in cuticular wax biosynthesis and secretion.


Assuntos
Antocianinas/química , Vaccinium myrtillus/química , Ceras/química , Ácidos Graxos/análise , Ácidos Graxos/química , Frutas/química , Frutas/metabolismo , Microscopia Eletroquímica de Varredura , Extratos Vegetais , Vaccinium myrtillus/metabolismo , Vaccinium myrtillus/ultraestrutura
7.
Food Chem ; 295: 441-448, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174780

RESUMO

Aerial surfaces of plants are covered by a waxy cuticle protecting plants from excessive water loss and UV light. In the present study, composition and morphology of cuticular waxes of northern wild berry species bilberry (Vaccinium myrtillus L.), lingonberry (V. vitis-idaea L.), bog bilberry (V. uliginosum L.) and crowberry (Empetrum nigrum L.) were investigated. Scanning electron microscopy (SEM) revealed differences in epicuticular wax morphology, and gas chromatography-mass spectrometry (GC-MS) analysis confirmed variation in chemical composition of cuticular waxes between the berry species. The dominant compounds in bilberry and lingonberry cuticular waxes were triterpenoids, while fatty acids and alkanes were the dominant ones in bog bilberry and crowberry, respectively. Wax extracted by supercritical fluid extraction (SFE) from industrial press cakes of bilberry and lingonberry contained linoleic acid and γ-linolenic acid as the dominant compounds. Furthermore, in vitro sun protection factor (SPF) of berry waxes depicted good UV-B absorbing capacities.


Assuntos
Mirtilos Azuis (Planta)/química , Vaccinium myrtillus/química , Vaccinium vitis-Idaea/química , Ceras/análise , Antocianinas , Fracionamento Químico/métodos , Ácidos Graxos/análise , Finlândia , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais , Fator de Proteção Solar , Raios Ultravioleta , Ceras/química , Ceras/isolamento & purificação
8.
Artigo em Inglês | MEDLINE | ID: mdl-30562630

RESUMO

Although the wild parsnip (Pastinaca sativa L. s.l.) fruits are known to contain linear and angular furanocoumarins, the individual components of the seeds have not been fully identified and quantitated, and, in the case of immature seeds, reported. In view of this, the main furanocoumarin compounds were extracted using pyridine, and were isolated using semi-preparative high-performance liquid chromatography. The structural elucidation of isolated compounds was done based on detailed spectral analysis conducted by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI/MS), 1H and 13C NMR and, where possible, by gas chromatography-mass spectrometry (GC-MS). The quantitative analysis of furanocoumarin compounds in the wild parsnip was conducted by analytical ultra-performance liquid chromatography (UPLC-DAD), calculated against the standard curves of isolated compounds. The total yields of furanocoumarin compounds from the seeds after extraction with pyridine were 107.2-222.8 mg g-1 (fresh weight) and 50.2-66.4 mg g-1 (soluble dry matter). Thirteen furanocoumarins were identified. The main compounds (percentage in FW) in immature seeds were bergapten (40.8), pimpinellin (10.5), methoxsalen (5.7), isopimpinellin (4.3), imperatorin (3.2), and phellopterin (7.2). Seven constituents previously not described in P. sativa seeds and its products were identified, namely, byakangelicol (14.4), heraclenin (8.5), isobergapten (2.5), byakangelicin (1.3), heraclenol (0.5), psoralen (0.3), and isobyakangelicin (0.8). The latter is a new compound of the Apiaceae family. Extraction of immature seeds using pyridine gave a much higher yield and a greater variety of furanocoumarins. This indicates that the wild parsnip, along with other Apiaceae family plants, may be an important source of bioactive compounds.


Assuntos
Furocumarinas/análise , Furocumarinas/química , Pastinaca/química , Sementes/química , Cromatografia Líquida de Alta Pressão , Furocumarinas/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray
9.
Plants (Basel) ; 7(4)2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30352980

RESUMO

The amplified production of fruit as well as burgeoning demand for plant-made food products have resulted in a sharp increase of waste. Currently, millions of tons of by-products are either being discarded or utilized rather ineffectively. However, these by-products may be processed and further incorporated as functional ingredients in making high-value food products with many physiological and biochemical effects. The chemical analysis of pomace oils using gas chromatography-mass spectrometry (GC/MS) and reversed-phase-liquid chromatography coupled with fluorescence detector (RP-HPLC/FLD) systems led to the identification and quantification of 56 individual lipophilic compounds including unsaturated, polyunsaturated and saturated fatty acids, as well as phytosterols and four homologs of tocopherol. The oils recovered from by-products of Malus spp. (particularly cv. "Ola") are rich in fatty acids such as linolenic (57.8%), α-linolenic (54.3%), and oleic (25.5%). The concentration of total tocopherols varied among the Malus species and dessert apples investigated, representing the range of 16.8⁻30.9 mg mL-1. The highest content of total tocopherols was found in M. Bernu prieks, followed by M. cv. "Ola", and M. × Soulardii pomace oils. A significantly higher amount of δ-tocopherol was established in the oil of M. Bernu prieks, indicating that this species could be utilized as a natural and cheap source of bioactive molecules. ß-Sitosterol was the prevalent compound determined in all tested pomace oils with a percentage distribution of 10.3⁻94.5%. The main triterpene identified in the oils was lupeol, which varied in the range of 0.1⁻66.3%. A targeted utilization of apple pomace would facilitate management of tons of by-products and benefit the environment and industry.

10.
Planta Med ; 74(5): 491-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18543146

RESUMO

Naturally occurring benzodiazepines have been identified in regular food such as wheat and potato, but there is still no evidence that potato extracts can affect CNS responses in vivo. Here we found that undiluted potato juice and potato juice diluted with saline 1 : 2 administered 10 min intracisternally ( I. C.) and 30 min per os before bicuculline exerted significant anticonvulsant activity in the bicuculline-induced seizure threshold test in mice. In vitro, potato juice from different harvests at dilution series from 10 % to 0.000001 %, diluted 100,000-fold, displaced 50 % of gamma-aminobutyric acid (GABA) receptor ligand [ (3)H]GABA and diluted 40-fold displaced 50 % of [(3)H]flunitrazepam from binding sites in mice forebrain membranes. The low content of diazepam (0.04 +/- 0.01 mg/kg) determined by HPLC and mass spectrometry in the potato extracts could not sustain the anticonvulsant activity of potato juice in vivo; therefore we hypothesized that potato juice might contain GABA (A) receptor GABA-site active compounds. The findings of this study suggest that potato juice as well as potato taken as food may have the capacity of influencing brain GABA-ergic activity.


Assuntos
Anticonvulsivantes/análise , Comportamento Animal/efeitos dos fármacos , Diazepam/análise , Extratos Vegetais/farmacologia , Receptores de GABA/metabolismo , Solanum tuberosum/química , Animais , Anticonvulsivantes/farmacologia , Bicuculina , Cromatografia Líquida de Alta Pressão , Diazepam/farmacologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos ICR , Receptores de GABA/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA