Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Eur Radiol Exp ; 8(1): 3, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191711

RESUMO

Intracranial aneurysms (IAs) are usually incidentally discovered by magnetic resonance imaging (MRI). Once discovered, the risk associated with their treatment must be balanced with the risk of an unexpected rupture. Although clinical observations suggest that the detection of contrast agent in the aneurysm wall using a double-inversion recovery black-blood (BB) sequence may point to IA wall instability, the exact meaning of this observation is not understood. Validation of reliable diagnostic markers of IA (in)stability is of utmost importance to deciding whether to treat or not an IA. To longitudinally investigate IA progression and enhance our understanding of this devastating disease, animal models are of great help. The aim of our study was to improve a three-dimensional (3D)-time-of-flight (TOF) sequence and to develop a BB sequence on a standard preclinical 3-T MRI unit to investigate intracranial arterial diseases in rats. We showed that our 3D-TOF sequence allows reliable measurements of intracranial artery diameters, inter-artery distances, and angles between arteries and that our BB sequence enables us to visualize intracranial arteries. We report the first BB-MRI sequence to visualize intracranial arteries in rats using a preclinical 3-T MRI unit. This sequence could be useful for a large community of researchers working on intracranial arterial diseases.Relevance statement We developed a black-blood MRI sequence to study vessel wall enhancement in rats with possible application to understanding IAs instability and finding reliable markers for clinical decision-making.Key points• Reliable markers of aneurysm stability are needed for clinical decision.• Detection of contrast enhancement in the aneurysm wall may be associated with instability.• We developed a black-blood MRI sequence in rats to be used to study vessel wall enhancement of IAs.


Assuntos
Aneurisma , Doenças Arteriais Intracranianas , Animais , Ratos , Artérias , Angiografia por Ressonância Magnética , Modelos Animais
2.
Data Brief ; 52: 110014, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38235173

RESUMO

Intracranial aneurysm (IA) rupture is a common cause of hemorrhagic stroke. The treatment of unruptured IAs is a challenging decision that requires delicate risk stratification. The rate of poor clinical outcomes after surgical intervention (aneurysm clipping) or endovascular coiling remains elevated (6.7% and 4.8%, respectively), and they do not provide an absolute guarantee to prevent IA growth and rupture. Currently, there is no pharmaceutical treatment to cure or stabilize IAs. Improving the current or developing new treatments for IA disease would require a better understanding of the cellular and molecular mechanisms occurring in the different stages of the disease. Hemodynamic forces play a critical role in IA disease. While the role of wall shear stress in IAs is well-established, the influence of cyclic circumferential stretch (CCS) still needs clarification. IAs are generally characterized by a lack of CCS. In this investigation, we sought to understand the effect of aneurysmal CCS on endothelial cell (EC) function and its potential significance in IA disease, hypothesizing that CCS can influence IA wall remodelling. RNA-seq data were generated from human umbilical vein ECs (HUVECs) exposed to physiological (6%) or aneurysmal CCS (static). We performed differential gene expression and pathway enrichment analysis. Additionally, we highlighted cell junction gene expression between static and 6% CCS to contribute to the debate about how cell junctions affect endothelium stability and integrity. Researchers in the vascular biology field may benefit from this transcriptomic profile to understand the effect of mechanical stretch on EC biology and its potential significance in vascular disease development.

3.
J Nanobiotechnology ; 21(1): 371, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821897

RESUMO

BACKGROUND: The opening of pannexin1 channels is considered as a key event in inflammation. Pannexin1 channel-mediated release of adenosine triphosphate triggers inflammasome signaling and activation of immune cells. By doing so, pannexin1 channels play an important role in several inflammatory diseases. Although pannexin1 channel inhibition could represent a novel clinical strategy for treatment of inflammatory disorders, therapeutic pannexin1 channel targeting is impeded by the lack of specific, potent and/or in vivo-applicable inhibitors. The goal of this study is to generate nanobody-based inhibitors of pannexin1 channels. RESULTS: Pannexin1-targeting nanobodies were developed as potential new pannexin1 channel inhibitors. We identified 3 cross-reactive nanobodies that showed affinity for both murine and human pannexin1 proteins. Flow cytometry experiments revealed binding capacities in the nanomolar range. Moreover, the pannexin1-targeting nanobodies were found to block pannexin1 channel-mediated release of adenosine triphosphate. The pannexin1-targeting nanobodies were also demonstrated to display anti-inflammatory effects in vitro through reduction of interleukin 1 beta amounts. This anti-inflammatory outcome was reproduced in vivo using a human-relevant mouse model of acute liver disease relying on acetaminophen overdosing. More specifically, the pannexin1-targeting nanobodies lowered serum levels of inflammatory cytokines and diminished liver damage. These effects were linked with alteration of the expression of several NLRP3 inflammasome components. CONCLUSIONS: This study introduced for the first time specific, potent and in vivo-applicable nanobody-based inhibitors of pannexin1 channels. As demonstrated for the case of liver disease, the pannexin1-targeting nanobodies hold great promise as anti-inflammatory agents, yet this should be further tested for extrahepatic inflammatory disorders. Moreover, the pannexin1-targeting nanobodies represent novel tools for fundamental research regarding the role of pannexin1 channels in pathological and physiological processes.


Assuntos
Hepatopatias , Anticorpos de Domínio Único , Animais , Humanos , Camundongos , Trifosfato de Adenosina , Anti-Inflamatórios , Inflamassomos , Inflamação/tratamento farmacológico , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/uso terapêutico
4.
J Med Chem ; 66(18): 13086-13102, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37703077

RESUMO

Following a rational design, a series of macrocyclic ("stapled") peptidomimetics of 10Panx1, the most established peptide inhibitor of Pannexin1 (Panx1) channels, were developed and synthesized. Two macrocyclic analogues SBL-PX1-42 and SBL-PX1-44 outperformed the linear native peptide. During in vitro adenosine triphosphate (ATP) release and Yo-Pro-1 uptake assays in a Panx1-expressing tumor cell line, both compounds were revealed to be promising bidirectional inhibitors of Panx1 channel function, able to induce a two-fold inhibition, as compared to the native 10Panx1 sequence. The introduction of triazole-based cross-links within the peptide backbones increased helical content and enhanced in vitro proteolytic stability in human plasma (>30-fold longer half-lives, compared to 10Panx1). In adhesion assays, a "double-stapled" peptide, SBL-PX1-206 inhibited ATP release from endothelial cells, thereby efficiently reducing THP-1 monocyte adhesion to a TNF-α-activated endothelial monolayer and making it a promising candidate for future in vivo investigations in animal models of cardiovascular inflammatory disease.


Assuntos
Doenças Cardiovasculares , Conexinas , Animais , Humanos , Conexinas/metabolismo , Células Endoteliais/metabolismo , Linhagem Celular Tumoral , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Trifosfato de Adenosina/metabolismo
5.
Cardiovasc Res ; 119(13): 2342-2354, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37556386

RESUMO

AIMS: No effective therapy is available in clinics to protect the heart from ischaemia/reperfusion (I/R) injury. Endothelial cells are activated after I/R, which may drive the inflammatory response by releasing ATP through pannexin1 (Panx1) channels. Here, we investigated the role of Panx1 in cardiac I/R. METHODS AND RESULTS: Panx1 was found in cardiac endothelial cells, neutrophils, and cardiomyocytes. After in vivo I/R, serum Troponin-I, and infarct size were less pronounced in Panx1-/- mice, but leukocyte infiltration in the infarct area was similar between Panx1-/- and wild-type mice. Serum Troponin-I and infarct size were not different between mice with neutrophil-specific deletion of Panx1 and Panx1fl/fl mice, suggesting that cardioprotection by Panx1 deletion rather involved cardiomyocytes than the inflammatory response. Physiological cardiac function in wild-type and Panx1-/- hearts was similar. The time to onset of contracture and time to maximal contracture were delayed in Panx1-/- hearts, suggesting reduced sensitivity of these hearts to ischaemic injury. Moreover, Panx1-/- hearts showed better recovery of left ventricle developed pressure, cardiac contractility, and relaxation after I/R. Ischaemic preconditioning failed to confer further protection in Panx1-/- hearts. Panx1 was found in subsarcolemmal mitochondria (SSM). SSM in WT or Panx1-/- hearts showed no differences in morphology. The function of the mitochondrial permeability transition pore and production of reactive oxygen species in SSM was not affected, but mitochondrial respiration was reduced in Panx1-/- SSM. Finally, Panx1-/- cardiomyocytes had a decreased mitochondrial membrane potential and an increased mitochondrial ATP content. CONCLUSION: Panx1-/- mice display decreased sensitivity to cardiac I/R injury, resulting in smaller infarcts and improved recovery of left ventricular function. This cardioprotective effect of Panx1 deletion seems to involve cardiac mitochondria rather than a reduced inflammatory response. Thus, Panx1 may represent a new target for controlling cardiac reperfusion damage.


Assuntos
Contratura , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Células Endoteliais , Troponina I , Miócitos Cardíacos , Mitocôndrias Cardíacas , Trifosfato de Adenosina , Infarto , Proteínas do Tecido Nervoso/genética , Conexinas/genética
6.
Bioorg Chem ; 138: 106612, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37210827

RESUMO

Pannexin1 channels facilitate paracrine communication and are involved in a broad spectrum of diseases. Attempts to find appropriate pannexin1 channel inhibitors that showcase target-selective properties and in vivo applicability remain nonetheless scarce. However, a promising lead candidate, the ten amino acid long peptide mimetic 10Panx1 (H-Trp1-Arg2-Gln3-Ala4-Ala5-Phe6-Val7-Asp8-Ser9-Tyr10-OH), has shown potential as a pannexin1 channel inhibitor in both in vitro and in vivo studies. Nonetheless, structural optimization is critical for clinical use. One of the main hurdles to overcome along the optimization process consists of subduing the low biological stability (10Panx1 t1/2 = 2.27 ± 0.11 min). To tackle this issue, identification of important structural features within the decapeptide structure is warranted. For this reason, a structure-activity relationship study was performed to proteolytically stabilize the sequence. Through an Alanine scan, this study demonstrated that the side chains of Gln3 and Asp8 are crucial for 10Panx1's channel inhibitory capacity. Guided by plasma stability experiments, scissile amide bonds were identified and stabilized, while extracellular adenosine triphosphate release experiments, indicative of pannexin1 channel functionality, allowed to enhance the in vitro inhibitory capacity of 10Panx1.


Assuntos
Fragmentos de Peptídeos , Peptídeos , Sequência de Aminoácidos , Peptídeos/farmacologia , Aminoácidos , Alanina
7.
Neurosurg Rev ; 46(1): 56, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786880

RESUMO

Intracranial aneurysm (IA) animal models are paramount to study IA pathophysiology and to test new endovascular treatments. A number of in vivo imaging modalities are available to characterize IAs at different stages of development in these animal models. This review describes existing in vivo imaging techniques used so far to visualize IAs in animal models. We systematically searched for studies containing in vivo imaging of induced IAs in animal models in PubMed and SPIE Digital library databases between 1 January 1945 and 13 July 2022. A total of 170 studies were retrieved and reviewed in detail, and information on the IA animal model, the objective of the study, and the imaging modality used was collected. A variety of methods to surgically construct or endogenously induce IAs in animals were identified, and 88% of the reviewed studies used surgical methods. The large majority of IA imaging in animals was performed for 4 reasons: basic research for IA models, testing of new IA treatment modalities, research on IA in vivo imaging of IAs, and research on IA pathophysiology. Six different imaging techniques were identified: conventional catheter angiography, computed tomography angiography, magnetic resonance angiography, hemodynamic imaging, optical coherence tomography, and fluorescence imaging. This review presents and discusses the advantages and disadvantages of all in vivo IA imaging techniques used in animal models to help future IA studies finding the most appropriate IA imaging modality and animal model to answer their research question.


Assuntos
Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Tomografia de Coerência Óptica , Angiografia por Tomografia Computadorizada/métodos , Angiografia por Ressonância Magnética
8.
Front Cell Dev Biol ; 10: 1020826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438559

RESUMO

An exaggerated inflammatory response is the hallmark of a plethora of disorders. ATP is a central signaling molecule that orchestrates the initiation and resolution of the inflammatory response by enhancing activation of the inflammasome, leukocyte recruitment and activation of T cells. ATP can be released from cells through pannexin (Panx) channels, a family of glycoproteins consisting of three members, Panx1, Panx2, and Panx3. Panx1 is ubiquitously expressed and forms heptameric channels in the plasma membrane mediating paracrine and autocrine signaling. Besides their involvement in the inflammatory response, Panx1 channels have been shown to contribute to different modes of cell death (i.e., pyroptosis, necrosis and apoptosis). Both genetic ablation and pharmacological inhibition of Panx1 channels decrease inflammation in vivo and contribute to a better outcome in several animal models of inflammatory disease involving various organs, including the brain, lung, kidney and heart. Up to date, several molecules have been identified to inhibit Panx1 channels, for instance probenecid (Pbn), mefloquine (Mfq), flufenamic acid (FFA), carbenoxolone (Cbx) or mimetic peptides like 10Panx1. Unfortunately, the vast majority of these compounds lack specificity and/or serum stability, which limits their application. The recent availability of detailed structural information on the Panx1 channel from cryo-electron microscopy studies may open up innovative approaches to acquire new classes of synthetic Panx1 channel blockers with high target specificity. Selective inhibition of Panx1 channels may not only limit acute inflammatory responses but may also prove useful in chronic inflammatory diseases, thereby improving human health. Here, we reviewed the current knowledge on the role of Panx1 in the initiation and resolution of the inflammatory response, we summarized the effects of Panx1 inhibition in inflammatory pathologies and recapitulate current Panx1 channel pharmacology with an outlook towards future approaches.

9.
Cardiovasc Res ; 118(1): 141-155, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33135065

RESUMO

AIMS: During atherosclerosis, smooth muscle cells (SMCs) accumulate in the intima where they switch from a contractile to a synthetic phenotype. From porcine coronary artery, we isolated spindle-shaped (S) SMCs exhibiting features of the contractile phenotype and rhomboid (R) SMCs typical of the synthetic phenotype. S100A4 was identified as a marker of R-SMCs in vitro and intimal SMCs, in pig and man. S100A4 exhibits intra- and extracellular functions. In this study, we investigated the role of extracellular S100A4 in SMC phenotypic transition. METHODS AND RESULTS: S-SMCs were treated with oligomeric recombinant S100A4 (oS100A4), which induced nuclear factor (NF)-κB activation. Treatment of S-SMCs with oS100A4 in combination with platelet-derived growth factor (PDGF)-BB induced a complete SMC transition towards a pro-inflammatory R-phenotype associated with NF-κB activation, through toll-like receptor-4. RNA sequencing of cells treated with oS100A4/PDGF-BB revealed a strong up-regulation of pro-inflammatory genes and enrichment of transcription factor binding sites essential for SMC phenotypic transition. In a mouse model of established atherosclerosis, neutralization of extracellular S100A4 decreased area of atherosclerotic lesions, necrotic core, and CD68 expression and increased α-smooth muscle actin and smooth muscle myosin heavy chain expression. CONCLUSION: We suggest that the neutralization of extracellular S100A4 promotes the stabilization of atherosclerotic plaques. Extracellular S100A4 could be a new target to influence the evolution of atherosclerotic plaques.


Assuntos
Anticorpos Neutralizantes/farmacologia , Doenças da Aorta/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Placa Aterosclerótica , Proteína A4 de Ligação a Cálcio da Família S100/antagonistas & inibidores , Actinas/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Becaplermina/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Cadeias Pesadas de Miosina/metabolismo , Fenótipo , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/farmacologia , Transdução de Sinais , Miosinas de Músculo Liso/metabolismo , Sus scrofa , Receptor 4 Toll-Like/metabolismo
10.
Cardiovasc Res ; 118(6): 1583-1596, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33974072

RESUMO

AIMS: Wall shear stress (WSS) determines intracranial aneurysm (IA) development. Polycystic kidney disease (PKD) patients have a high IA incidence and risk of rupture. Dysfunction/absence of primary cilia in PKD endothelial cells (ECs) may impair mechano-transduction of WSS and favour vascular disorders. The molecular links between primary cilia dysfunction and IAs are unknown. METHODS AND RESULTS: Wild-type and primary cilia-deficient Tg737orpk/orpk arterial ECs were submitted to physiological (30 dynes/cm2) or aneurysmal (2 dynes/cm2) WSS, and unbiased transcriptomics were performed. Tg737orpk/orpk ECs displayed a fivefold increase in the number of WSS-responsive genes compared to wild-type cells. Moreover, we observed a lower trans-endothelial resistance and a higher endothelial permeability, which correlated with disorganized intercellular junctions in Tg737orpk/orpk cells. We identified ZO-1 as a central regulator of primary cilia-dependent endothelial junction integrity. Finally, clinical and histological characteristics of IAs from non-PKD and PKD patients were analysed. IAs in PKD patients were more frequently located in the middle cerebral artery (MCA) territory than in non-PKD patients. IA domes from the MCA of PKD patients appeared thinner with less collagen and reduced endothelial ZO-1 compared with IA domes from non-PKD patients. CONCLUSION: Primary cilia dampen the endothelial response to aneurysmal low WSS. In absence of primary cilia, ZO-1 expression levels are reduced, which disorganizes intercellular junctions resulting in increased endothelial permeability. This altered endothelial function may not only contribute to the severity of IA disease observed in PKD patients, but may also serve as a potential diagnostic tool to determine the vulnerability of IAs.


Assuntos
Cílios , Células Endoteliais , Cílios/metabolismo , Cílios/patologia , Células Endoteliais/metabolismo , Humanos , Permeabilidade , Estresse Mecânico , Proteínas Supressoras de Tumor/metabolismo
11.
Neurosurg Rev ; 45(2): 1233-1253, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34743248

RESUMO

Intracranial aneurysm (IA), a local outpouching of cerebral arteries, is present in 3 to 5% of the population. Once formed, an IA can remain stable, grow, or rupture. Determining the evolution of IAs is almost impossible. Rupture of an IA leads to subarachnoid hemorrhage and affects mostly young people with heavy consequences in terms of death, disabilities, and socioeconomic burden. Even if the large majority of IAs will never rupture, it is critical to determine which IA might be at risk of rupture. IA (in)stability is dependent on the composition of its wall and on its ability to repair. The biology of the IA wall is complex and not completely understood. Nowadays, the risk of rupture of an IA is estimated in clinics by using scores based on the characteristics of the IA itself and on the anamnesis of the patient. Classification and prediction using these scores are not satisfying and decisions whether a patient should be observed or treated need to be better informed by more reliable biomarkers. In the present review, the effects of known risk factors for rupture, as well as the effects of biomechanical forces on the IA wall composition, will be summarized. Moreover, recent advances in high-resolution vessel wall magnetic resonance imaging, which are promising tools to discriminate between stable and unstable IAs, will be described. Common data elements recently defined to improve IA disease knowledge and disease management will be presented. Finally, recent findings in genetics will be introduced and future directions in the field of IA will be exposed.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Adolescente , Aneurisma Roto/patologia , Aneurisma Roto/cirurgia , Artérias Cerebrais , Humanos , Aneurisma Intracraniano/patologia , Imageamento por Ressonância Magnética , Hemorragia Subaracnóidea/patologia , Hemorragia Subaracnóidea/cirurgia
12.
Front Cardiovasc Med ; 8: 775307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957259

RESUMO

Background: The circle of Willis is a network of arteries allowing blood supply to the brain. Bulging of these arteries leads to formation of intracranial aneurysm (IA). Subarachnoid hemorrhage (SAH) due to IA rupture is among the leading causes of disability in the western world. The formation and rupture of IAs is a complex pathological process not completely understood. In the present study, we have precisely measured aneurysmal wall thickness and its uniformity on histological sections and investigated for associations between IA wall thickness/uniformity and commonly admitted risk factors for IA rupture. Methods: Fifty-five aneurysm domes were obtained at the Geneva University Hospitals during microsurgery after clipping of the IA neck. Samples were embedded in paraffin, sectioned and stained with hematoxylin-eosin to measure IA wall thickness. The mean, minimum, and maximum wall thickness as well as thickness uniformity was measured for each IA. Clinical data related to IA characteristics (ruptured or unruptured, vascular location, maximum dome diameter, neck size, bottleneck factor, aspect and morphology), and patient characteristics [age, smoking, hypertension, sex, ethnicity, previous SAH, positive family history for IA/SAH, presence of multiple IAs and diagnosis of polycystic kidney disease (PKD)] were collected. Results: We found positive correlations between maximum dome diameter or neck size and IA wall thickness and thickness uniformity. PKD patients had thinner IA walls. No associations were found between smoking, hypertension, sex, IA multiplicity, rupture status or vascular location, and IA wall thickness. No correlation was found between patient age and IA wall thickness. The group of IAs with non-uniform wall thickness contained more ruptured IAs, women and patients harboring multiple IAs. Finally, PHASES and ELAPSS scores were positively correlated with higher IA wall heterogeneity. Conclusion: Among our patient and aneurysm characteristics of interest, maximum dome diameter, neck size and PKD were the three factors having the most significant impact on IA wall thickness and thickness uniformity. Moreover, wall thickness heterogeneity was more observed in ruptured IAs, in women and in patients with multiple IAs. Advanced medical imaging allowing in vivo measurement of IA wall thickness would certainly improve personalized management of the disease and patient care.

13.
Front Physiol ; 12: 727338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721060

RESUMO

Background: Intracranial aneurysms (IAs) result from abnormal enlargement of the arterial lumen. IAs are mostly quiescent and asymptomatic, but their rupture leads to severe brain damage or death. As the evolution of IAs is hard to predict and intricates medical decision, it is essential to improve our understanding of their pathophysiology. Wall shear stress (WSS) is proposed to influence IA growth and rupture. In this study, we investigated the effects of low and supra-high aneurysmal WSS on endothelial cells (ECs). Methods: Porcine arterial ECs were exposed for 48 h to defined levels of shear stress (2, 30, or 80 dyne/cm2) using an Ibidi flow apparatus. Immunostaining for CD31 or γ-cytoplasmic actin was performed to outline cell borders or to determine cell architecture. Geometry measurements (cell orientation, area, circularity and aspect ratio) were performed on confocal microscopy images. mRNA was extracted for RNAseq analysis. Results: ECs exposed to low or supra-high aneurysmal WSS were more circular and had a lower aspect ratio than cells exposed to physiological flow. Furthermore, they lost the alignment in the direction of flow observed under physiological conditions. The effects of low WSS on differential gene expression were stronger than those of supra-high WSS. Gene set enrichment analysis highlighted that extracellular matrix proteins, cytoskeletal proteins and more particularly the actin protein family were among the protein classes the most affected by shear stress. Interestingly, most genes showed an opposite regulation under both types of aneurysmal WSS. Immunostainings for γ-cytoplasmic actin suggested a different organization of this cytoskeletal protein between ECs exposed to physiological and both types of aneurysmal WSS. Conclusion: Under both aneurysmal low and supra-high WSS the typical arterial EC morphology molds to a more spherical shape. Whereas low WSS down-regulates the expression of cytoskeletal-related proteins and up-regulates extracellular matrix proteins, supra-high WSS induces opposite changes in gene expression of these protein classes. The differential regulation in EC gene expression observed under various WSS translate into a different organization of the ECs' architecture. This adaptation of ECs to different aneurysmal WSS conditions may affect vascular remodeling in IAs.

14.
J Am Soc Nephrol ; 32(12): 3130-3145, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34615708

RESUMO

BACKGROUND: Active sodium reabsorption is the major factor influencing renal oxygen consumption and production of reactive oxygen species (ROS). Increased sodium reabsorption uses more oxygen, which may worsen medullary hypoxia and produce more ROS via enhanced mitochondrial ATP synthesis. Both mechanisms may activate the hypoxia-inducible factor (HIF) pathway. Because the collecting duct is exposed to low oxygen pressure and variations of active sodium transport, we assessed whether the HIF pathway controls epithelial sodium channel (ENaC)-dependent sodium transport. METHODS: We investigated HIF's effect on ENaC expression in mpkCCD cl4 cells (a model of collecting duct principal cells) using real-time PCR and western blot and ENaC activity by measuring amiloride-sensitive current. We also assessed the effect of hypoxia and sodium intake on abundance of kidney sodium transporters in wild-type and inducible kidney tubule-specific Hif1α knockout mice. RESULTS: In cultured cells, activation of the HIF pathway by dimethyloxalylglycine or hypoxia inhibited sodium transport and decreased expression of ß ENaC and γ ENaC, as well as of Na,K-ATPase. HIF1 α silencing increased ß ENaC and γ ENaC expression and stimulated sodium transport. A constitutively active mutant of HIF1 α produced the opposite effect. Aldosterone and inhibition of the mitochondrial respiratory chain slowly activated the HIF pathway, suggesting that ROS may also activate HIF. Decreased γ ENaC abundance induced by hypoxia in normal mice was abolished in Hif1α knockout mice. Similarly, Hif1α knockout led to increased γ ENaC abundance under high sodium intake. CONCLUSIONS: This study reveals that γ ENaC expression and activity are physiologically controlled by the HIF pathway, which may represent a negative feedback mechanism to preserve oxygenation and/or prevent excessive ROS generation under increased sodium transport.


Assuntos
Túbulos Renais Coletores , Sódio na Dieta , Camundongos , Animais , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Sódio na Dieta/farmacologia , Camundongos Knockout
15.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072103

RESUMO

This review highlights current knowledge on the expression and function of connexins and pannexins, transmembrane channel proteins that play an important role in intercellular communication, in both the developing and mature lymphatic vasculature. A particular focus is given to the involvement of these proteins in functions of the healthy lymphatic system. We describe their influence on the maintenance of extracellular fluid homeostasis, immune cell trafficking to draining lymph nodes and dietary nutrient absorption by intestinal villi. Moreover, new insights into connexin mutations in primary and secondary lymphedema as well as on the implication of lymphatic connexins and pannexins in acquired cardiovascular diseases are discussed, allowing for a better understanding of the role of these proteins in pathologies linked to dysfunctions in the lymphatic system.


Assuntos
Biomarcadores , Conexinas/genética , Conexinas/metabolismo , Suscetibilidade a Doenças , Homeostase , Sistema Linfático/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Expressão Gênica , Humanos , Imuno-Histoquímica , Linfedema/etiologia , Linfedema/metabolismo , Linfedema/patologia , Mutação , Organogênese/genética
16.
Metabolites ; 11(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069148

RESUMO

Despite continuous medical advances, atherosclerosis remains the prime cause of mortality worldwide. Emerging findings on brown and beige adipocytes highlighted that these fat cells share the specific ability of non-shivering thermogenesis due to the expression of uncoupling protein 1. Brown fat is established during embryogenesis, and beige cells emerge from white adipose tissue exposed to specific stimuli like cold exposure into a process called browning. The consecutive energy expenditure of both thermogenic adipose tissues has shown therapeutic potential in metabolic disorders like obesity and diabetes. The latest data suggest promising effects on atherosclerosis development as well. Upon cold exposure, mice and humans have a physiological increase in brown adipose tissue activation and browning of white adipocytes is promoted. The use of drugs like ß3-adrenergic agonists in murine models induces similar effects. With respect to atheroprotection, thermogenic adipose tissue activation has beneficial outcomes in mice by decreasing plasma triglycerides, total cholesterol and low-density lipoproteins, by increasing high-density lipoproteins, and by inducing secretion of atheroprotective adipokines. Atheroprotective effects involve an unaffected hepatic clearance. Latest clinical data tend to find thinner atherosclerotic lesions in patients with higher brown adipose tissue activity. Strategies for preserving healthy arteries are a major concern for public health.

17.
Sci Rep ; 11(1): 5135, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664384

RESUMO

Diagnostics of myocardial infarction in human post-mortem hearts can be achieved only if ischemia persisted for at least 6-12 h when certain morphological changes appear in myocardium. The initial 4 h of ischemia is difficult to diagnose due to lack of a standardized method. Developing a panel of molecular tissue markers is a promising approach and can be accelerated by characterization of molecular changes. This study is the first untargeted metabolomic profiling of ischemic myocardium during the initial 4 h directly from tissue section. Ischemic hearts from an ex-vivo Langendorff model were analysed using matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) at 15 min, 30 min, 1 h, 2 h, and 4 h. Region-specific molecular changes were identified even in absence of evident histological lesions and were segregated by unsupervised cluster analysis. Significantly differentially expressed features were detected by multivariate analysis starting at 15 min while their number increased with prolonged ischemia. The biggest significant increase at 15 min was observed for m/z 682.1294 (likely corresponding to S-NADHX-a damage product of nicotinamide adenine dinucleotide (NADH)). Based on the previously reported role of NAD+/NADH ratio in regulating localization of the sodium channel (Nav1.5) at the plasma membrane, Nav1.5 was evaluated by immunofluorescence. As expected, a fainter signal was observed at the plasma membrane in the predicted ischemic region starting 30 min of ischemia and the change became the most pronounced by 4 h. Metabolomic changes occur early during ischemia, can assist in identifying markers for post-mortem diagnostics and improve understanding of molecular mechanisms.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Coração/diagnóstico por imagem , Isquemia Miocárdica/diagnóstico por imagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Autopsia , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Humanos , Metabolômica , Infarto do Miocárdio , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , NAD/isolamento & purificação , NAD/metabolismo , Ratos , Fatores de Tempo
18.
Biomolecules ; 10(9)2020 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842488

RESUMO

Since the mid-20th century, ischemic heart disease has been the world's leading cause of death. Developing effective clinical cardioprotection strategies would make a significant impact in improving both quality of life and longevity in the worldwide population. Both ex vivo and in vivo animal models of cardiac ischemia/reperfusion (I/R) injury are robustly used in research. Connexin43 (Cx43), the predominant gap junction channel-forming protein in cardiomyocytes, has emerged as a cardioprotective target. Cx43 posttranslational modifications as well as cellular distribution are altered during cardiac reperfusion injury, inducing phosphorylation states and localization detrimental to maintaining intercellular communication and cardiac conduction. Pre- (before ischemia) and post- (after ischemia but before reperfusion) conditioning can abrogate this injury process, preserving Cx43 and reducing cell death. Pre-/post-conditioning has been shown to largely rely on the presence of Cx43, including mitochondrial Cx43, which is implicated to play a major role in pre-conditioning. Posttranslational modifications of Cx43 after injury alter the protein interactome, inducing negative protein cascades and altering protein trafficking, which then causes further damage post-I/R injury. Recently, several peptides based on the Cx43 sequence have been found to successfully diminish cardiac injury in pre-clinical studies.


Assuntos
Cardiotônicos/metabolismo , Conexina 43/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Conexina 43/química , Modelos Animais de Doenças , Junções Comunicantes/metabolismo , Humanos , Técnicas In Vitro , Mitocôndrias Cardíacas/metabolismo , Modelos Cardiovasculares , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/patologia
19.
J Cell Mol Med ; 24(13): 7102-7114, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32490600

RESUMO

Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.


Assuntos
Cardiotônicos/metabolismo , Canais Iônicos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Animais , Canais de Cálcio/metabolismo , Humanos , Modelos Biológicos , Pesquisa Translacional Biomédica
20.
Prog Biophys Mol Biol ; 153: 35-41, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220599

RESUMO

Gap junctions mediate cellular communication and homeostasis by controlling the intercellular exchange of small and hydrophilic molecules and ions. Gap junction channels are formed by the docking of 2 hemichannels of adjacent cells, which in turn are composed of 6 connexin subunits. Connexin proteins as such can also control the cellular life cycle independent of their channel activities. This has been most demonstrated in the context of cell growth and cell death. Different mechanisms are involved mainly related to direct interaction with cell growth or cell death regulators, but also implying effects on the expression of cell growth and cell death regulators. The present paper focuses on these atypical roles of connexin proteins.


Assuntos
Conexinas/metabolismo , Animais , Morte Celular , Proliferação de Células , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA