Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comp Biochem Physiol C Toxicol Pharmacol ; 283: 109972, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972622

RESUMO

Endocrine-disrupting chemicals (EDCs) are toxic pollutants generated by artificial activities. Moreover, their hormone-like structure induces disturbances, such as mimicking or blocking metabolic activity. Previous studies on EDCs have focused on the adverse effect of the endocrine system in vertebrates, with limited investigations conducted on ion channels in invertebrates. Thus, in this study, we investigated the potential adverse effects of exposure to bisphenol-A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) at the molecular level on the ryanodine receptor (RyR), a calcium ion channel receptor in Macrophthalmus japonicus. In the phylogenetic analysis, the RyR amino acid sequences in M. japonicus clustered with those in the Crustacean and formed separated branches for RyR in insects and mammals. When exposed to 1 µg L-1 BPA, a significant increase in RyR mRNA expression was observed in the gills on day 1, although a similar level to the control group was observed from day 4 to day 7. However, the RyR expression due to DEHP exposure decreased on days 1 and 4, although it increased on day 7 following exposure to 10 µg L-1. The RyR expression pattern in the hepatopancreas increased for up to 4 days, depending on the BPA concentration. However, there was a tendency for the expression to decrease gradually after the statistical significance increased during the early stage of DEHP exposure (D1). Hence, the transcriptional alterations in the M. japonicus RyR gene observed in the study suggest that exposure toxicities to EDCs, such as BPA and DEHP, have the potential to disrupt calcium ion channel signaling in the gills and hepatopancreas of M. japonicus crabs.

2.
Heliyon ; 10(10): e30858, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813215

RESUMO

Microplastics (MPs) are pervasive pollutants exuded from anthropogenic activities and ingested by animals in different ecosystems. This transcriptomic profiling study aimed to explore the impact of polyethylene MPs on Mytilus galloprovincialis, an ecologically significant bivalve species. The toxicity of two MPs types was found to result in increased cellular stress when exposed up to 14 days. Moreover, recovery mechanisms were also observed in progress. Mussels exhibited different gene expression patterns and molecular regulation in response to cellular reactive oxygen species (ROS) stress. The transcriptome analysis demonstrated a notable hindrance in cilia movement as MPs ingested through gills. Subsequent entry resulted in a significant disruption in the cytoskeletal organization, cellular projection, and cilia beat frequency. On day 4 (D4), signal transduction and activation of apoptosis evidenced the signs of toxic consequences. Mussels exposed to spherical MPs shown significant recovery on day 14 (D14), characterized by the upregulation of anti-apoptotic genes and antioxidant genes. The expression of P53 and BCL2 genes was pivotal in controlling the apoptotic process and promoting cell survival. Mussels exposed to fibrous MPs displayed a delayed cell survival effect. However, the elevated physiological stress due to fibrous MPs resulted in energy transfer by compensatory regulation of metabolic processes to expedite cellular recovery. These observations highlighted the intricate and varied reaction of cell survival mechanisms in mussels to recover toxicity. This study provides critical evidence of the ecotoxicological impacts of two different MPs and emphasizes the environmental risks they pose to aquatic ecosystems. Our conclusion highlights the detrimental effects of MPs on M. galloprovincialis and the need for more stringent regulations to protect marine ecosystems.

3.
Environ Toxicol Pharmacol ; 108: 104456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657882

RESUMO

Di(2-ethylhexyl) phthalate (DEHP), have been increasingly used as plasticizers to manufacture soft and flexible materials and ubiquitously found in water and sediments in the aquatic ecosystem. The aim of the present study was to evaluate the effect of DEHP exposure on cellular homeostasis (HSF1 and seven HSPs), immune responses (ILF), and apoptotic responses (p53, BAX, Bcl-2). DEHP exposure upregulated the expression of HSF1 and ILF. Moreover, it altered the expression levels of HSPs (upregulation of HSP70, HSP90, HSP40, HSP83, and HSP67B2 and downregulation of HSP60 and HSP21) in conjunction with HSF1 and ILF in the gills and hepatopancreas of M. japonicus exposed to DEHP. At the protein level, DEHP exposure changed apoptotic signals in both tissues of M. japonicus. These findings indicate that chronic exposures to several DEHP concentrations could disturb cellular balance, damage the inflammatory and immune systems, and induce apoptotic cell death, thereby affecting the survival of M. japonicus.


Assuntos
Apoptose , Dietilexilftalato , Homeostase , Plastificantes , Poluentes Químicos da Água , Dietilexilftalato/toxicidade , Apoptose/efeitos dos fármacos , Animais , Plastificantes/toxicidade , Poluentes Químicos da Água/toxicidade , Homeostase/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos
4.
PLoS One ; 19(2): e0292916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422090

RESUMO

Climate changes have altered biodiversity and ultimately induced community changes that have threatened the survival of certain aquatic organisms such as fish species. Obtaining biological and genetic information on endangered fish species is critical for ecological population management. Thamnaconus multilineatus, registered as an endangered species by the IUCN in 2019, is a Data Deficient (DD) species with a remarkably small number of habitats worldwide and no known information other than its habitat and external form. In this study, we characterized the external and osteological morphology of a T. multilineatus specimen collected from eastern Jeju Island, South Korea, in 2020. We also investigated the phylogenetic relationships among related fish species through complete mitochondrial DNA (mtDNA) analysis of the T. multilineatus specimen. The external and skeletal characteristics of T. multilineatus were similar to those of previous reports describing other fish of the genus Thamnaconus, making it difficult to classify T. multilineatus as a similar species based only on morphological characteristics. As a result of analyzing the complete mtDNA of T. multilineatus, the length of the mtDNA was determined to be 16,435 bp, and the mitochondrial genome was found to have 37 CDCs, including 13 PCGs, 22 tRNAs, and 2 rRNAs. In the phylogenetic analysis within the suborder Balistoidei, T. multilineatus mtDNA formed a cluster with fish of the genus Thamnaconus. This study is the first to report on the skeletal structure and complete mtDNA of T. multilineatus. Since the current research on T. multilineatus has only been reported on morphology, the results of this study will be utilized as important information for the management and restoration of T. multilineatus as an endangered species and significant fishery resource.


Assuntos
Tetraodontiformes , Animais , Filogenia , DNA Mitocondrial/genética , Mitocôndrias , Biodiversidade , Espécies em Perigo de Extinção
5.
Cell Death Discov ; 9(1): 442, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057300

RESUMO

Microplastics (MPs) is an escalating aquatic environmental crisis that poses significant threats to marine organisms, especially mussels. Here, we compare the cumulative toxic effects of the two most abundant morphotypes of MPs in the environment, microspheres, and microfibers, on the gill and digestive gland (DG) of Mytilus galloprovincialis in a dose-dependent (1, 10, and 100 mg/L) and time-dependent (1, 4, 7, 14, 21 days exposure) manner. DNA fragmentation assessment through TUNEL assay revealed consistency in the pattern of morphological disturbance degree and cell apoptosis proportions indicated by histopathological analysis. Upon the acute phase of exposure (day 1-4), gill and DG treated with low MPs concentration exhibited preserved morphology and low proportion of TUNEL+ cells. At higher concentrations, spherical and fibrous MP-induced structural impairments and DNA breakage occurred at distinct levels. 100 mg/L microfibers was lethal to all mussels on day 21, indicating the higher toxicity of the fibrous particles. During the chronic phase, both morphological abnormalities degree and DNA fragmentation level increased over time and with increasing concentration, but the differentials between the spherical and fibrous group was gradually reduced, particularly diminished in 10 and 100 mg/L in the last 2 weeks. Furthermore, analysis of transcriptional activities of key genes for apoptosis of 100 mg/L-day 14 groups revealed the upregulation of both intrinsic and extrinsic apoptotic induction pathway and increment in gene transcripts involving genotoxic stress and energy metabolism according to MP morphotypes. Overall, microfibers exert higher genotoxic effects on mussel. In response, mussels trigger more intense apoptotic responses together with enhanced energy metabolism to tolerate the adverse effects in a way related to the accumulation of stimuli.

6.
Cell Stress Chaperones ; 28(6): 959-968, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37880562

RESUMO

Apoptosis is a key defense process for multiple immune system functions, playing a central role in maintaining homeostasis and cell development. The purpose of this study was to evaluate the effects of environmental pollutant exposure on immune-related apoptotic pathways in crab tissues and human cells. To do this, we characterized the multifunctional immune complement component 1q (C1q) gene and analyzed C1q expression in Macrophthalmus japonicus crabs after exposure to di(2-ethylhexyl) phthalate (DEHP) or hexabromocyclododecanes (HBCDs). Moreover, the responses of apoptotic signal-related genes were observed in M. japonicus tissues and human cell lines (HEK293T and HCT116). C1q gene expression was downregulated in the gills and hepatopancreas of M. japonicus after exposure to DEHP or HBCD. Pollutant exposure also increased antioxidant enzyme activities and altered transcription of 15 apoptotic signaling genes in M. japonicus. However, patterns in apoptotic signaling in response to these pollutants differed in human cells. HBCD exposure generated an apoptotic signal (cleaved caspase-3) and inhibited cell growth in both cell lines, whereas DEHP exposure did not produce such a response. These results suggest that exposure to environmental pollutants induced different levels of immune-related apoptosis depending on the cell or tissue type and that this induction of apoptotic signaling may trigger an initiation of carcinogenesis in M. japonicus and in humans as consumers.


Assuntos
Braquiúros , Dietilexilftalato , Poluentes Ambientais , Animais , Humanos , Complemento C1q/genética , Complemento C1q/metabolismo , Complemento C1q/farmacologia , Braquiúros/genética , Braquiúros/metabolismo , Dietilexilftalato/farmacologia , Poluentes Ambientais/toxicidade , Células HEK293 , Apoptose/genética
7.
Chemosphere ; 344: 140350, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37793548

RESUMO

Assessment of inorganic arsenate (As(V)) is critical for ensuring a sustainable environment because of its adverse effects on humans and ecosystems. This study is the first to attempt to predict As(V) toxicity to the bioluminescent bacterium Aliivibrio fischeri exposed to varying As(V) dosages and environmental factors (pH and phosphate concentration) using six machine learning (ML)-guided models. The predicted toxicity values were compared with those predicted using the extended biotic ligand model (BLM) we previously developed to evaluate the toxic effect of oxyanion (i.e., As(V)). The relationship between the variables (input features) and toxicity (output) was found to play an important role in the prediction accuracy of each ML-guided model. The results indicated that the extended BLM had the highest prediction accuracy, with a root mean square error (RMSE) of 12.997. However, with an RMSE of 14.361, the multilayer perceptron (MLP) model exhibited quasi-accurate prediction, despite having been trained with a relatively small dataset (n = 256). In view of simplicity, an MLP model is compatible with an extended BLM and does not require expert knowledge for the derivation of specific parameters, such as binding fraction and binding constant values. Furthermore, with the development and employment of reliable in-situ sensing techniques, monitoring data are expected to be augmented faster to provide sufficient training data for the improvement of prediction accuracy which may, thus, allow it to outperform the extended BLM after obtaining sufficient data.


Assuntos
Arseniatos , Ecossistema , Humanos , Arseniatos/toxicidade , Ligantes , Aliivibrio fischeri
8.
Environ Pollut ; 337: 122554, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717895

RESUMO

The brackish water clam (Corbicula japonica) is constantly exposed to stressful salinity gradients and high levels of heavy metals in the freshwater-saltwater interface of estuary environments, which are introduced from upstream regions and land. To identify the key molecular pathways involved in the response to salinity changes and heavy metal bioaccumulation, we obtained the transcriptomes of C. japonica inhabiting different salinities and heavy metal distributions in Gwangyang Bay (Korea) using RNA sequencing. Among a total of 404,486 assembled unigenes, 5534 differentially expressed genes were identified in C. japonica inhabiting different conditions, 1549 of which were significantly upregulated and 1355 were significantly downregulated. Correlation analyses revealed distinct gene expression patterns between the low and high conditions of salinity and heavy metal bioaccumulation. Functional annotation revealed significant downregulation of genes involved in "ubiquitin-dependent protein catabolic process," "tricarboxylic acid cycle," and "intracellular protein transport" in C. japonica from the high condition compared to the low condition. Transcription and translation pathways were significantly enriched in the high condition. Additionally, upon comparison of the low and high conditions by qRT-PCR and proteasome enzyme activity analyses, our findings demonstrated that environmental stress could suppress the ubiquitin-proteasome complex (UPC). Additionally, transcriptomic changes under high salinity stress conditions may be related to an increase in cellular protection by defense enzymes, which leads to more energy being required and a disruption of energy homeostasis. Ultimately, this could cause growth retardation in the clam C. japonica. In summary, this study provides the first evidence of UPC suppression induced by a combination of high salinity and heavy metal bioaccumulation stress in C. japonica, which could compromise the survival and growth of estuarine bivalves.


Assuntos
Corbicula , Metais Pesados , Animais , Corbicula/metabolismo , Bioacumulação , Salinidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Águas Salinas , Metais Pesados/análise , Transtornos do Crescimento , Ubiquitinas/metabolismo
9.
Antioxidants (Basel) ; 12(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37507982

RESUMO

Heat shock proteins (HSPs) encompass both extrinsic chaperones and stress proteins. These proteins, with molecular weights ranging from 14 to 120 kDa, are conserved across all living organisms and are expressed in response to stress. The upregulation of specific genes triggers the synthesis of HSPs, facilitated by the interaction between heat shock factors and gene promoter regions. Notably, HSPs function as chaperones or helper molecules in various cellular processes involving lipids and proteins, and their upregulation is not limited to heat-induced stress but also occurs in response to anoxia, acidosis, hypoxia, toxins, ischemia, protein breakdown, and microbial infection. HSPs play a vital role in regulating protein synthesis in cells. They assist in the folding and assembly of other cellular proteins, primarily through HSP families such as HSP70 and HSP90. Additionally, the process of the folding, translocation, and aggregation of proteins is governed by the dynamic partitioning facilitated by HSPs throughout the cell. Beyond their involvement in protein metabolism, HSPs also exert a significant influence on apoptosis, the immune system, and various characteristics of inflammation. The immunity of aquatic organisms, including shrimp, fish, and shellfish, relies heavily on the development of inflammation, as well as non-specific and specific immune responses to viral and bacterial infections. Recent advancements in aquatic research have demonstrated that the HSP levels in populations of fish, shrimp, and shellfish can be increased through non-traumatic means such as water or oral administration of HSP stimulants, exogenous HSPs, and heat induction. These methods have proven useful in reducing physical stress and trauma, while also facilitating sustainable husbandry practices such as vaccination and transportation, thereby offering health benefits. Hence, the present review discusses the importance of HSPs in different tissues in aquatic organisms (fish, shrimp), and their expression levels during pathogen invasion; this gives new insights into the significance of HSPs in invertebrates.

10.
Sci Total Environ ; 896: 165241, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37394070

RESUMO

Chironomid larvae (Diptera: Chironomidae) are tremendous indicator species that can tolerate a broad range of environmental conditions, from polluted to unimpaired water ecosystems. These species are ubiquitously observed in all bioregions and can even be found in drinking water treatment plants (DWTPs). Detection of chironomid larvae in DWTPs is a critical issue because their presence may be indicative of the water quality in the supply of tap water for human consumption. Therefore, the aim of the present study was to identify the chironomid communities that reflect the water quality of DWTPs and develop a biomonitoring tool to detect biological contamination of the chironomids in DWTPs. To do so, we investigated the identity and distribution of chironomid larvae in seven DWTP areas using morphological identification, DNA barcoding, and sediment environmental DNA (eDNA) analysis. A total of 7924 chironomid individuals encompassing three subfamilies and 25 species of 19 genera were identified in 33 sites within the DWTPs. The Gongchon and Bupyeong DWTPs were dominated by Chironomus spp. larvae, which were correlated with low levels of dissolved oxygen in the water. In the Samgye DWTP and Hwajeong DWTP, Chironomus spp. were almost absent, and instead, Tanytarsus spp. were abundant. Additionally, the Gangjeong DWTP was dominated by a Microtendipes sp., and two species of Orthocladiinae (a Parametriocnemus sp. and a Paratrichocladius sp.) were found only in the Jeju DWTP. We also identified the eight most abundant Chironomidae larvae found in the DWTPs. Furthermore, eDNA metabarcoding of DWTP sediment indicated the presence of different eukaryotic fauna and confirmed the presence of chironomids in DWTPs. These data provide useful morphological and genetic information regarding chironomid larvae that can be used for the water quality biomonitoring of DWTPs to support the supply of clean drinking water.


Assuntos
Chironomidae , DNA Ambiental , Água Potável , Humanos , Animais , Chironomidae/genética , Larva , Ecossistema
11.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511256

RESUMO

The seafood industry plays a huge role in the blue economy, exploiting the advantage of the enriched protein content of marine organisms such as shrimps and molluscs, which are cultured in aquafarms. Diseases greatly affect these aquatic organisms in culture and, hence, there is need to study, in detail, their innate immune mechanisms. Hemocyanin is a non-specific innate defense molecule present in the blood cells of several invertebrates, especially molluscs, arthropods, and annelids. It is concerned with oxygen transport, blood clotting, and immune enhancement. In the present study, this macromolecular metalloprotein was isolated from the hemolymph of the marine snail Hemifusus pugilinus (Born, 1778) using Sephadex G-100 gel filtration column chromatography. It occurred as a single band (MW 80 kDa) on SDS-PAGE. High-performance liquid chromatography (HPLC) of the purified hemocyanin showed a single peak with a retention time of 4.3 min. The secondary structure and stability of the protein were detected using circular dichroism (CD), and the spectra demonstrated negative ellipticity bands close to 208 nm and 225 nm, indicating ß-sheets. Further exploration of the purified hemocyanin revealed remarkable antimicrobial and antibiofilm activities against Gram-positive (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative bacteria (Pseudomonas aeruginosa and Proteus vulgaris) at a concentration of 1-5 µg/mL. Spectrophotometric and in situ microscopic analyses (CLSM) unveiled the potential of the purified hemocyanin to inhibit biofilm formation in these bacteria with a minimal inhibitory concentration of 40 µg/mL. Furthermore, H. pugilinus hemocyanin (10 µg/mL concentration) displayed antifungal activity against Aspergillus niger. The purified hemocyanin was also assessed for cytotoxicity against human cancer cells using cell viability assays. Altogether, the present study shows that molluscan hemocyanin is a potential antimicrobial, antibiofilm, antifungal, anticancer, and immunomodulatory agent, with great scope for application in the enhancement of the immune system of molluscs, thereby facilitating their aquaculture.


Assuntos
Anti-Infecciosos , Hemocianinas , Animais , Humanos , Hemocianinas/farmacologia , Antifúngicos , Anti-Infecciosos/farmacologia , Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Biofilmes , Antibacterianos/química
12.
J Hazard Mater ; 456: 131656, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236104

RESUMO

A clean and adequate supply of drinking water is essential to life and good health. However, despite the risk of biologically derived contamination of drinking water, monitoring of invertebrate outbreaks has relied primarily on naked-eye inspections that are prone to errors. In this study, we applied environmental DNA (eDNA) metabarcoding as a biomonitoring tool at seven different stages of drinking water treatment, from prefiltration to release from household faucets. While the composition of invertebrate eDNA communities reflected the communities of the source water in earlier stages of the treatment, several predominant invertebrate taxa (e.g., rotifer) were shown to be introduced during purification, but most were eliminated in later treatment stages. In addition, the limit of detection/quantification of PCR assay and read capacity of high-throughput sequencing was assessed with further microcosm experiments to estimate the applicability eDNA metabarcoding to the biocontamination surveillance in drinking water treatment plants (DWTPs). Here we propose a novel eDNA-based approach for sensitive and efficient surveillance of invertebrate outbreaks in DWTPs.


Assuntos
DNA Ambiental , Água Potável , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , DNA/genética , Monitoramento Ambiental , Invertebrados
13.
Toxics ; 10(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422911

RESUMO

In this study, the adsorption characteristics of dimethylated arsenicals to rice husk biochar (BC) and Fe/biochar composite (FeBC) were assessed through isothermal adsorption experiments and X-ray absorption spectroscopy analysis. The maximal adsorption capacities (qm) of inorganic arsenate, calculated using the Langmuir isotherm equation, were 1.28 and 6.32 mg/g for BC and FeBC, respectively. Moreover, dimethylated arsenicals did not adsorb to BC at all, and in the case of FeBC, qm values of dimethylarsinic acid (DMA(V)), dimethylmonothioarsinic acid (DMMTA(V)), and dimethyldithioarsinic acid (DMDTA(V)) were calculated to be 7.08, 0.43, and 0.28 mg/g, respectively. This was due to the formation of iron oxide (i.e., two-line ferrihydrite) on the surface of BC. Linear combination fitting using As K-edge X-ray absorption near edge structure spectra confirmed that all chemical forms of dimethylated arsenicals adsorbed on the two-line ferrihydrite were DMA(V). Thus, FeBC could retain highly mobile and toxic arsenicals such as DMMTA(V) and DMDTA(V)) in the environment, and transform them into DMA(V) with relatively low toxicity.

14.
Microorganisms ; 10(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36363699

RESUMO

Chironomidae (chironomid) are one of the dominant families in freshwater ecosystems, and they plays an important role in the food web. They have been used as an indicator for water quality assessment, as they are resistant to diverse environmental pollutants. In this study, we identified the microbiomes of two chironomid species to see if there are any endogenous bacterial groups which could contribute to the host survival. The studied species are Glyptotendipes tokunagai, a model species cultivated in a laboratory-controlled environment, and Chironomus flaviplumus captured in a field stream in Yeosu, Korea. DNAs were extracted from the whole body of the individual species, and the 16S rRNA gene was amplified. The amplified products were sequenced using an Illumina MiSeq platform. The microbiomes of G. tokunagai were homogeneous, having 20% of the core amplicon sequence variants overlapping between replicates sampled from different water tanks. In contrast, none of the core amplicon sequence variants overlapped in C.flaviplumus. In both chironomid groups, potential symbionts were identified. Dysgonomonas, which can degrade complex carbon sources, was found in more than half of the total microbiomes of G. tokunagai. Tyzzerella and Dechloromonas, which have been suggested to detoxify environmental pollutants, were identified in the microbiome of C.flaviplumus. This study can help elucidate the life strategies of chironomids in polluted or organic-rich environments.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36141743

RESUMO

Pale chub (Zacco platypus) is a dominant species in urban rivers and reservoirs, and it is used as an indicator to monitor the effects of environmental contaminants. Gene responses at the molecular level can reflect the health of fish challenged with environmental stressors. The objective of this study was to identify correlations between water quality factors and the expression of stress-related genes in Z. platypus from different lake environments (Singal and Juam Lakes). To do so, transcriptional responses of genes involving cellular homeostasis (heat-shock protein 70, HSP70; heat-shock protein 90, HSP90), metal detoxification (metallothionein, MT), and antioxidation (superoxide dismutase, SOD; catalase, CAT) were analyzed in the gill and liver tissues of Z. platypus. HSP70, HSP90, and MT genes were overall upregulated in Z. platypus from Singal Lake, which suffered from poorer water quality than Juam Lake. In addition, gene responses were significantly higher in Singal Lake outflow. Upregulation of HSP70, HSP90, and MT was significantly higher in Z. platypus gills than in the liver tissue. In addition, integrated biomarker response and heatmap analysis determined correlations between expression of biomarker genes or water quality factors and sampling sites of both lakes. These results suggest that stress-related genes used as multiple biomarkers may reflect spatial characteristics and water quality of different lake environments, and they can be used for biomonitoring and ecological risk assessment.


Assuntos
Cyprinidae , Ornitorrinco , Poluentes Químicos da Água , Animais , Monitoramento Biológico , Biomarcadores/metabolismo , Catalase/metabolismo , Cyprinidae/metabolismo , Ecossistema , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Metalotioneína , Ornitorrinco/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/análise
16.
Artigo em Inglês | MEDLINE | ID: mdl-36078662

RESUMO

We analyzed the dietary composition of Polypedilum larvae among two contrasting habitats (river and weir). Our approach was (i) to apply eDNA-based sampling to reveal the gut content of the chironomid larvae, (ii) the diversity of gut contents in the two aquatic habitats, and (iii) assessment of habitat sediment condition with the food sources in the gut. The most abundant food was Chlorophyta in the gut of the river (20%) and weir (39%) chironomids. The average ratio of fungi, protozoa, and zooplankton in river chironomids gut was 5.9%, 7.2%, and 3.8%, while it was found decreased to 1.2%, 2.5%, and 0.1% in weir chironomids. Aerobic fungi in river midge guts were 3.6% and 10.34% in SC and IS, while they were in the range of 0.34-2.58% in weir midges. The hierarchical clustering analysis showed a relationship of environmental factors with food contents. Abiotic factors (e.g., pH) in the river and weir habitats correlated the clustered pattern with phytoplankton and minor groups of fungi. This study could help understand the food source diversity in the chironomid and habitat environmental conditions by using eDNA metabarcoding as an effective tool to determine dietary composition.


Assuntos
Chironomidae , Animais , Biodiversidade , Chironomidae/genética , Ecossistema , Larva/genética , Fitoplâncton/genética , Rios
17.
Mitochondrial DNA B Resour ; 7(9): 1676-1678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147364

RESUMO

The complete mitochondrial genome of the clam Corbicula japonica is 17,432 bp in length. The sequence consists of 13 protein-coding, 2 ribosomal RNAs, and 22 transfer RNA genes (GenBank accession no. MZ895053). The proportion of base-pairs in C. japonica are A + T (70.5%) and G + C (29.5%). Phylogenetic analysis reveal C. japonica to be sister species to C. fluminea within the monophyletic genus Corbicula, with high support. This study is helpful to the classification of the brackish water clam C. japonica, which is difficult to identify during early development owing to variation of shell morphology.

18.
Fish Shellfish Immunol ; 127: 843-854, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843523

RESUMO

The present study was conducted to assess the protective efficacy of a trivalent oral vaccine containing chitosan-PLGA encapsulated inactivated viral haemorrhagic septicemia virus (VHSV), Streptococcus parauberis serotype I and Miamiensis avidus antigens, followed by its oral (incorporated in feed) administration to olive flounder (Paralichthys olivaceus) fingerlings for a period of 15-consecutive days. After 35 days of initial vaccination, three separate challenge studies were conducted at the optimal temperature of the targeted pathogens using an intraperitoneal injection route. RPS analysis revealed moderate protection in the immunized group against all the three pathogens viz., VHSV (53.30% RPS), S. parauberis serotype-I (33.30% RPS), and M. avidus (66.75% RPS), as compared to the respective non-vaccinated challenge (NVC) control group. In addition, the immunized fish demonstrated significantly (p < 0.05) higher specific antibody titres in serum and significant (p < 0.05) upregulation in the transcript levels of immune genes of Igs (IgM, IgT, pIgR), TLRs (TLR 2, TLR 7), cytokines (IL-1ß, IL-8) and complement pathway (C3) in the mucosal and systemic tissues than those of NVC control fish, suggesting orchestration of pathogen-specific host immune responses thereby favouring its combativeness against the three pathogens. The expression dynamics of IFN-γ, Mx, caspase 3 genes post VHSV challenge; IFN-γ, TLR 2, caspase 1 genes post S. parauberis serotype I challenge and CD-8α, IL-10, TNF-α genes post M. avidus challenge further substantiates the efficacy of the vaccine in stimulating antiviral, antibacterial and antiparasitic immune responses in the host resulting in their better survival. The findings from the present study reflect that the formulated trivalent oral vaccine incorporating VHSV, S. parauberis serotype I and M. avidus antigens can be a promising prophylactic strategy to prevent the associated disease outbreaks in olive flounder.


Assuntos
Quitosana , Doenças dos Peixes , Linguado , Septicemia Hemorrágica Viral , Septicemia Hemorrágica , Novirhabdovirus , Oligoimenóforos , Vacinas Virais , Animais , Doenças dos Peixes/prevenção & controle , Septicemia Hemorrágica Viral/prevenção & controle , Novirhabdovirus/fisiologia , Streptococcus , Receptor 2 Toll-Like
19.
Sci Total Environ ; 842: 156555, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750185

RESUMO

Global warming is causing a continuous increase in environmental temperatures, which simultaneously activates toxic environmental stresses, such as heavy metal exposure, in aquatic ecosystems. The present study aimed at evaluating the effects of Cu toxicity along with increased temperature during zebrafish embryogenesis. Decreased survival rates were observed following combined exposure to high temperature and Cu. Heart rates of zebrafish embryos were significantly increased only during heat stress. An abnormal morphology with curved body shape was induced by exposure to a combination of Cu and heat stress. Furthermore, heat stress also triggered Cu-induced intracellular reactive oxygen species (ROS) production, with upregulation of superoxide dismutase (SOD) and glutathione s-transferase (GST) expression, and cell death with modified expression of p53 and B-cell lymphoma-2 (Bcl-2) in zebrafish embryos. Finally, increased cortisol levels and altered expression of cortisol-signaling genes were observed following exposure to Cu and high temperatures. These results highlight that realistic exposure to combined stressors induces developmental disturbances via stress-induced responses involving oxidative stress and cell death as well as transcriptional alterations leading to cortisol signaling in fish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Antioxidantes/metabolismo , Ecossistema , Hidrocortisona , Estresse Oxidativo , Temperatura , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/fisiologia
20.
Antioxidants (Basel) ; 11(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35453456

RESUMO

Persistent organic pollutants (POPs), some of the most dangerous chemicals released into the aquatic environment, are distributed worldwide due to their environmental persistence and bioaccumulation. In the study, we investigated p53-related apoptotic responses to POPs such as hexabromocyclododecanes (HBCDs) or 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in the mud crab Macrophthalmus japonicus. To do so, we characterized M. japonicus p53 and evaluated basal levels of p53 expression in different tissues. M. japonicus p53 has conserved amino acid residues involving sites for protein dimerization and DNA and zinc binding. In phylogenetic analysis, the homology of the deduced p53 amino acid sequence was not high (67−70%) among crabs, although M. japonicus p53 formed a cluster with one clade with p53 homologs from other crabs. Tissue distribution patterns revealed that the highest expression of p53 mRNA transcripts was in the hepatopancreas of M. japonicus crabs. Exposure to POPs induced antioxidant defenses to modulate oxidative stress through the upregulation of catalase expression. Furthermore, p53 expression was generally upregulated in the hepatopancreas and gills of M. japonicus after exposure to most concentrations of HBCD or BDE-47 for all exposure periods. In hepatopancreas tissue, significant increases in p53 transcript levels were observed as long-lasting apoptotic responses involving cellular defenses until day 7 of relative long-term exposure. The findings in this study suggest that exposure to POPs such as HBCD or BDE-47 may trigger the induction of cellular defense processes against oxidative stress, including DNA repair, cell cycle arrest, and apoptosis through the transcriptional upregulation of p53 expression in M. japonicus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA