Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732107

RESUMO

Arteriovenous malformations (AVMs) are congenital vascular anomalies with a poor prognosis. AVMs are considered intractable diseases, as there is no established approach for early diagnosis and treatment. Therefore, this study aimed to provide new evidence by analyzing microRNAs (miRNAs) associated with AVM. We present fundamental evidence for the early diagnosis and treatment of AVM by analyzing miRNAs in the endothelial cells of AVMs. This study performed sequencing and validation of miRNAs in endothelial cells from normal and AVM tissues. Five upregulated and two downregulated miRNAs were subsequently analyzed under hypoxia and vascular endothelial growth factor (VEGF) treatment by one-way analysis of variance (ANOVA). Under hypoxic conditions, miR-135b-5p was significantly upregulated in the AVM compared to that under normal conditions, corresponding to increased endothelial activity (p-value = 0.0238). VEGF treatment showed no significant increase in miR-135b-5p under normal conditions, however, a surge in AVM was observed. Under both hypoxia and VEGF treatment, comparison indicated a downregulation of miR-135b-5p in AVM. Therefore, miR-135b-5p was assumed to affect the pathophysiological process of AVM and might play a vital role as a potential biomarker of AVMs for application related to diagnosis and treatment.


Assuntos
Malformações Arteriovenosas , Biomarcadores , Células Endoteliais , MicroRNAs , Fator A de Crescimento do Endotélio Vascular , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/metabolismo , Malformações Arteriovenosas/patologia , Malformações Arteriovenosas/diagnóstico , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Masculino , Feminino , Adulto , Hipóxia Celular/genética
2.
Biochem Biophys Res Commun ; 673: 87-95, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37364390

RESUMO

Mesenchymal stem cell (MSC)-based therapy has emerged as a promising regenerative therapeutic approach for wound healing. To determine the effects of cultured MSCs as a 2D monolayer (2D-MSCs) and 3D spheroids (3D-MSCs) on their secretomes, and to examine the effect of 3D-MSC secretomes on endothelial cells (ECs) and MSCs in a burn injury mouse model. MSCs were cultured as 2D monolayers (2D-MSCs) and 3D spheroids (3D-MSCs) and their cellular characteristics were evaluated by western blotting. 2D-MSC and 3D-MSC secretomes (condition medium: CM) were analyzed using an angiogenic array. The activation of ECs by 2D-MSC and 3D-MSC CMs was examined in cellular proliferation, migration, and tube formation assays. The wound healing effects of 2D-MSCs and 3D-MSCs were determined in vivo using a burn injury mouse model. 3D culture conditions altered the markers of components that regulate cell survival, cytoskeletal, adhesion, and proliferation. Interleukin-6 (IL-6), vascular endothelial growth factor A (VEGFA), IL-8, and chemokine (CXC motif) ligand 1 (CXCL1) were present at high levels in the CM of 3D-MSCs compared with 2D-MCs. 3D-MSC-CMs promoted the proliferation, migration, and tube formation of ECs. Furthermore, 3D-MSC treatment enhanced wound healing in a burn injury mouse model. 3D culture improves proangiogenic factors in the MSC secretome and 3D-MSCs represent a new cell-based treatment strategy for wound healing.


Assuntos
Queimaduras , Células-Tronco Mesenquimais , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Secretoma , Células Endoteliais/metabolismo , Medula Óssea/metabolismo , Cicatrização , Queimaduras/terapia , Queimaduras/metabolismo , Meios de Cultivo Condicionados/farmacologia
3.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36012380

RESUMO

Arteriovenous malformation (AVM) is characterized by high-flow blood vessels connecting arteries and veins without capillaries. This disease shows increased angiogenesis and a pathophysiological hypoxic environment in proximal tissues. Here, we analyzed the effects of hypoxia on angiogenesis in the endothelial cells (ECs) of AVM and normal tissues. ECs from human normal and AVM tissues were evaluated using immunocytochemistry with CD31. In vitro tube formation under hypoxia was tested in both ECs using Matrigel. The relative expression of angiogenesis-related genes was measured using real-time PCR. Under normoxia, CD31 was significantly higher in AVM ECs (79.23 ± 0.65%) than in normal ECs (74.15 ± 0.70%). Similar results were observed under hypoxia in AVM ECs (63.85 ± 1.84%) and normal ECs (60.52 ± 0.51%). In the tube formation test under normoxic and hypoxic conditions, the junction count and total vessel length were significantly greater in AVM ECs than normal ECs. Under both normoxia and hypoxia, the angiogenesis-related gene FSTL1 showed a significantly higher expression in AVM ECs than in normal ECs. Under hypoxia, CSPG4 expression was significantly lower in AVM ECs than in normal ECs. Accordingly, the angiogenic effect was increased in AVM ECs compared with that in normal ECs. These results provide a basic knowledge for an AVM treatment strategy.


Assuntos
Proteínas Relacionadas à Folistatina , Malformações Arteriovenosas Intracranianas , Indutores da Angiogênese/metabolismo , Células Endoteliais/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Malformações Arteriovenosas Intracranianas/genética , Malformações Arteriovenosas Intracranianas/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
4.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35745621

RESUMO

A complete redevelopment of the skin remains a challenge in the management of acute and chronic wounds. Recently, the application of extracellular vesicles (EVs) for soft tissue wound healing has received much attention. As fibroblasts are fundamental cells for soft tissues and skin, we investigate the proangiogenic factors in human normal fibroblast-derived EVs (hNF-EVs) and their effects on wound healing. Normal fibroblasts were isolated from human skin tissues and characterized by immunofluorescence (IF) and Western blotting (WB). hNF-EVs were isolated by ultracentrifugation and characterized using transmission electron microscopy and WB. The proangiogenic cargos in hNF-EVs were identified by a TaqMan assay and a protein array. Other in vitro assays, including internalization assays, cell counting kit-8 analysis, scratch wound assays, WBs, and tube formation assays were conducted to assess the effects of hNF-EVs on fibroblasts and endothelial cells. A novel scaffold-free noninvasive delivery of hNF-EVs with or without fibrin glue was applied onto full-thickness skin wounds in mice. The wound healing therapeutical effect of hNF-EVs was assessed by calculating the rate of wound closure and through histological analysis. Isolated hNF was confirmed by verifying the expression of the fibroblast markers vimentin, αSMA, Hsp70, and S100A4. Isolated hNF-EVs showed intact EVs with round morphology, enriched in CD81 and CD63, and devoid of the cell markers GM130, Calnexin, and Cytochrome C. Our TaqMan assay showed that hNF-EVs were enriched in miR130a and miR210, and protein arrays showed enriched levels of the proangiogenic proteins' vascular endothelial growth factor (VEGF)-D and CXCL8. Next, we found that the internalization of hNF-EVs into hNF increased the proliferation and migration of hNF, in addition to increasing the expression of bFGF, MMP2, and αSMA. The internalization of hNF-EVs into the endothelial cells increased their proliferation and tube formation. A scaffold-free noninvasive delivery of hNF-EVs with or without fibrin glue accelerated the wound healing rate in full-thickness skin wounds in mice, and the treatments increased the cellular density, deposition, and maturation of collagens in the wounds. Moreover, the scaffold-free noninvasive delivery of hNF-EVs with or without fibrin glue increased the VEGF and CD31 expression in the wounds, indicating that hNF-EVs have an angiogenic ability to achieve complete skin regeneration. These findings open up for new treatment strategies to be developed for wound healing. Further, we offer a new approach to the efficient, scaffold-free noninvasive delivery of hNF-EVs to wounds.

5.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682793

RESUMO

The clinical aspects of hypertrophic scarring vary according to personal constitution and body part. However, the mechanism of hypertrophic scar (HS) formation remains unclear. MicroRNAs (miRNAs) are known to contribute to HS formation, however, their detailed role remains unknown. In this study, candidate miRNAs were identified and analyzed as biomarkers of hypertrophic scarring for future clinical applications. HSfibroblasts and normal skin fibroblasts from patients were used for profiling and validation of miRNAs. An HS mouse model with xenografted human skin on nude mice was established. The miRNA expression between normal human, normal mouse, and mouse HS skin tissues was compared. Circulating miRNA expression levels in the serum of normal mice and mice with HSs were also analyzed. Ten upregulated and twenty-one downregulated miRNAs were detected. Among these, miR-365a/b-3p and miR-16-5p were identified as candidate miRNAs with statistically significant differences; miR-365a/b-3p was significantly upregulated (p = 0.0244). In mouse studies, miR-365a/b-3p expression levels in skin tissue and serum were higher in mice with HSs than in the control group. These results indicate that miRNAs contribute to hypertrophic scarring and that miR-365a/b-3p may be considered a potential biomarker for HS formation.


Assuntos
Cicatriz Hipertrófica , MicroRNA Circulante , MicroRNAs , Animais , Biomarcadores/metabolismo , Cicatriz Hipertrófica/genética , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA