Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gut ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050079

RESUMO

OBJECTIVES: Cholangiocarcinoma (CCA) is a heterogeneous malignancy with high mortality and dismal prognosis, and an urgent clinical need for new therapies. Knowledge of the CCA epigenome is largely limited to aberrant DNA methylation. Dysregulation of enhancer activities has been identified to affect carcinogenesis and leveraged for new therapies but is uninvestigated in CCA. Our aim is to identify potential therapeutic targets in different subtypes of CCA through enhancer profiling. DESIGN: Integrative multiomics enhancer activity profiling of diverse CCA was performed. A panel of diverse CCA cell lines, patient-derived and cell line-derived xenografts were used to study identified enriched pathways and vulnerabilities. NanoString, multiplex immunohistochemistry staining and single-cell spatial transcriptomics were used to explore the immunogenicity of diverse CCA. RESULTS: We identified three distinct groups, associated with different etiologies and unique pathways. Drug inhibitors of identified pathways reduced tumour growth in in vitro and in vivo models. The first group (ESTRO), with mostly fluke-positive CCAs, displayed activation in estrogen signalling and were sensitive to MTOR inhibitors. Another group (OXPHO), with mostly BAP1 and IDH-mutant CCAs, displayed activated oxidative phosphorylation pathways, and were sensitive to oxidative phosphorylation inhibitors. Immune-related pathways were activated in the final group (IMMUN), made up of an immunogenic CCA subtype and CCA with aristolochic acid (AA) mutational signatures. Intratumour differences in AA mutation load were correlated to intratumour variation of different immune cell populations. CONCLUSION: Our study elucidates the mechanisms underlying enhancer dysregulation and deepens understanding of different tumourigenesis processes in distinct CCA subtypes, with potential significant therapeutics and clinical benefits.

2.
Nat Cell Biol ; 25(5): 765-777, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095322

RESUMO

PBRM1 encodes an accessory subunit of the PBAF SWI/SNF chromatin remodeller, and the inactivation of PBRM1 is a frequent event in kidney cancer. However, the impact of PBRM1 loss on chromatin remodelling is not well examined. Here we show that, in VHL-deficient renal tumours, PBRM1 deficiency results in ectopic PBAF complexes that localize to de novo genomic loci, activating the pro-tumourigenic NF-κB pathway. PBRM1-deficient PBAF complexes retain the association between SMARCA4 and ARID2, but have loosely tethered BRD7. The PBAF complexes redistribute from promoter proximal regions to distal enhancers containing NF-κB motifs, heightening NF-κB activity in PBRM1-deficient models and clinical samples. The ATPase function of SMARCA4 maintains chromatin occupancy of pre-existing and newly acquired RELA specific to PBRM1 loss, activating downstream target gene expression. Proteasome inhibitor bortezomib abrogates RELA occupancy, suppresses NF-κB activation and delays growth of PBRM1-deficient tumours. In conclusion, PBRM1 safeguards the chromatin by repressing aberrant liberation of pro-tumourigenic NF-κB target genes by residual PBRM1-deficient PBAF complexes.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Genômica , Neoplasias Renais/metabolismo , NF-kappa B/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
3.
Arterioscler Thromb Vasc Biol ; 43(5): 739-754, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924234

RESUMO

BACKGROUND: Marfan Syndrome (MFS) is an inherited connective tissue disorder caused by mutations in the FBN1 (fibrillin-1) gene. Lung abnormalities are common in MFS, but their pathogenesis is poorly understood. IL11 (interleukin-11) causes aortic disease in a mouse model of MFS and was studied here in the lung. METHODS: We examined histological and molecular phenotypes in the lungs of Fbn1C1041G/+ mice (mouse model of Marfan Syndrome [mMFS]), an established mouse model of MFS. To identify IL11-expressing cells, we used immunohistochemistry on lungs of 4- and 16-week-old Fbn1C1041G/+:Il11EGFP/+ reporter mice. We studied the effects of IL11 inhibition by RT-qPCR, immunoblots and histopathology in lungs from genetic or pharmacologic models: (1) 16-week-old IL11 receptor (IL11RA) knockout mMFS mice (Fbn1C1041G/+:Il11ra1-/- mice) and (2) in mMFS mice administered IgG control or interleukin-11 receptor antibodies twice weekly from 4 to 24 weeks of age. RESULTS: mMFS lungs showed progressive loss and enlargement of distal airspaces associated with increased proinflammatory and profibrotic gene expression as well as matrix metalloproteinases 2, 9, and 12. IL11 was increased in mMFS lungs and localized to smooth muscle and endothelial cells in young mMFS mice in the Fbn1C1041G/+:Il11EGFP/+ reporter strain and in fibroblasts, in older mice. In mMFS mice, genetic (Fbn1C1041G/+:Il11ra1-/-) or pharmacologic (anti-interleukin-11 receptor) inhibition of IL11 signaling reduced lung emphysema, fibrosis, and inflammation. This protective effect was associated with reduced pathogenic ERK1/2 signaling and lower metalloproteinase 2, 9, and 12 expression. CONCLUSIONS: IL11 causes lung disease in mMFS. This reveals a shared IL11-driven disease mechanism in lung and aorta in MFS and suggests inhibition of IL11 signaling as a holistic approach for treating multiorgan morbidity in MFS.


Assuntos
Interleucina-11 , Síndrome de Marfan , Enfisema Pulmonar , Animais , Camundongos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibrilina-1/genética , Interleucina-11/genética , Subunidade alfa de Receptor de Interleucina-11 , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Metaloproteinase 2 da Matriz/genética , Camundongos Knockout , Enfisema Pulmonar/complicações , Enfisema Pulmonar/genética
4.
Sci Rep ; 12(1): 21049, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473917

RESUMO

Mitochondrial dysfunction induced by acute cardiac ischemia-reperfusion (IR), may increase susceptibility to arrhythmias by perturbing energetics, oxidative stress production and calcium homeostasis. Although changes in mitochondrial morphology are known to impact on mitochondrial function, their role in cardiac arrhythmogenesis is not known. To assess action potential duration (APD) in cardiomyocytes from the Mitofusins-1/2 (Mfn1/Mfn2)-double-knockout (Mfn-DKO) compared to wild-type (WT) mice, optical-electrophysiology was conducted. To measure conduction velocity (CV) in atrial and ventricular tissue from the Mfn-DKO and WT mice, at both baseline and following simulated acute IR, multi-electrode array (MEA) was employed. Intracellular localization of connexin-43 (Cx43) at baseline was evaluated by immunohistochemistry, while Cx-43 phosphorylation was assessed by Western-blotting. Mfn-DKO cardiomyocytes demonstrated an increased APD. At baseline, CV was significantly lower in the left ventricle of the Mfn-DKO mice. CV decreased with simulated-ischemia and returned to baseline levels during simulated-reperfusion in WT but not in atria of Mfn-DKO mice. Mfn-DKO hearts displayed increased Cx43 lateralization, although phosphorylation of Cx43 at Ser-368 did not differ. In summary, Mfn-DKO mice have increased APD and reduced CV at baseline and impaired alterations in CV following cardiac IR. These findings were associated with increased Cx43 lateralization, suggesting that the mitofusins may impact on post-MI cardiac-arrhythmogenesis.


Assuntos
Conservadores da Densidade Óssea , Traumatismos Craniocerebrais , Camundongos , Animais , Eletrofisiologia Cardíaca , Isquemia
5.
Circ Res ; 130(5): 728-740, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35135328

RESUMO

BACKGROUND: Marfan syndrome (MFS) is associated with TGF (transforming growth factor) ß-stimulated ERK (extracellular signal-regulated kinase) activity in vascular smooth muscle cells (VSMCs), which adopt a mixed synthetic/contractile phenotype. In VSMCs, TGFß induces IL (interleukin) 11) that stimulates ERK-dependent secretion of collagens and MMPs (matrix metalloproteinases). Here, we examined the role of IL11 in the MFS aorta. METHODS: We used echocardiography, histology, immunostaining, and biochemical methods to study aortic anatomy, physiology, and molecular endophenotypes in Fbn1C1041G/+ mice, an established murine model of MFS (mMFS). mMFS mice were crossed to an IL11-tagged EGFP (enhanced green fluorescent protein; Il11EGFP/+) reporter strain or to a strain deleted for the IL11 receptor (Il11ra1-/-). In therapeutic studies, mMFS were administered an X209 (neutralizing antibody against IL11RA [IL11 receptor subunit alpha]) or IgG for 20 weeks and imaged longitudinally. RESULTS: IL11 mRNA and protein were elevated in the aortas of mMFS mice, as compared to controls. mMFS mice crossed to Il11EGFP/+ mice had increased IL11 expression in VSMCs, notably in the aortic root and ascending aorta. As compared to the mMFS parental strain, double mutant mMFS:Il11ra1-/- mice had reduced aortic dilatation and exhibited lesser fibrosis, inflammation, elastin breaks, and VSMC loss, which was associated with reduced aortic COL1A1 (collagen type I alpha 1 chain), IL11, MMP2/9, and phospho-ERK expression. To explore therapeutic targeting of IL11 signaling in MFS, we administered either a neutralizing antibody against IL11RA (X209) or an IgG control. After 20 weeks of antibody administration, as compared to IgG, mMFS mice receiving X209 had reduced thoracic and abdominal aortic dilation as well as lesser fibrosis, inflammation, elastin breaks, and VSMC loss. By immunoblotting, X209 was shown to reduce aortic COL1A1, IL11, MMP2/9, and phospho-ERK expression. CONCLUSIONS: In MFS, IL11 is upregulated in aortic VSMCs to cause ERK-related thoracic aortic dilatation, inflammation, and fibrosis. Therapeutic inhibition of IL11, imminent in clinical trials, might be considered as a new approach in MFS.


Assuntos
Doenças da Aorta , Síndrome de Marfan , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/farmacologia , Aorta/metabolismo , Doenças da Aorta/patologia , Modelos Animais de Doenças , Elastina/metabolismo , Fibrose , Imunoglobulina G/metabolismo , Inflamação/metabolismo , Interleucina-11/metabolismo , Subunidade alfa de Receptor de Interleucina-11 , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Receptores de Interleucina-11/metabolismo , Fator de Crescimento Transformador beta/metabolismo
6.
Sci Rep ; 10(1): 17853, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082445

RESUMO

Transforming growth factor beta-1 (TGFß1) is a major driver of vascular smooth muscle cell (VSMC) phenotypic switching, an important pathobiology in arterial disease. We performed RNA-sequencing of TGFß1-stimulated human aortic or arterial VSMCs which revealed large and consistent upregulation of Interleukin 11 (IL11). IL11 has an unknown function in VSMCs, which highly express the IL11 receptor alpha, suggestive of an autocrine loop. In vitro, IL11 activated ERK signaling, but inhibited STAT3 activity, and caused VSMC phenotypic switching to a similar extent as TGFß1 or angiotensin II (ANGII) stimulation. Genetic or therapeutic inhibition of IL11 signaling reduced TGFß1- or ANGII-induced VSMC phenotypic switching, placing IL11 activity downstream of these factors. Aortas of mice with Myh11-driven IL11 expression were remodeled and had reduced contractile but increased matrix and inflammatory genes expression. In two models of arterial pressure loading, IL11 was upregulated in the aorta and neutralizing IL11 antibodies reduced remodeling along with matrix and pro-inflammatory gene expression. These data show that IL11 plays an important role in VSMC phenotype switching, vascular inflammation and aortic pathobiology.


Assuntos
Aorta/patologia , Interleucina-11/fisiologia , Modelos Animais , Músculo Liso Vascular/patologia , Fenótipo , Remodelação Vascular/fisiologia , Animais , Anticorpos Neutralizantes/imunologia , Aorta/fisiopatologia , Fibrose , Interleucina-11/imunologia , Camundongos , Receptores de Interleucina-11/genética , Receptores de Interleucina-11/imunologia , Fator de Crescimento Transformador beta1/fisiologia
7.
PLoS One ; 15(1): e0227505, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31917819

RESUMO

Interleukin 11 (IL11) is a profibrotic cytokine, secreted by myofibroblasts and damaged epithelial cells. Smooth muscle cells (SMCs) also secrete IL11 under pathological conditions and express the IL11 receptor. Here we examined the effects of SMC-specific, conditional expression of murine IL11 in a transgenic mouse (Il11SMC). Within days of transgene activation, Il11SMC mice developed loose stools and progressive bleeding and rectal prolapse, which was associated with a 65% mortality by two weeks. The bowel of Il11SMC mice was inflamed, fibrotic and had a thickened wall, which was accompanied by activation of ERK and STAT3. In other organs, including the heart, lung, liver, kidney and skin there was a phenotypic spectrum of fibro-inflammation, together with consistent ERK activation. To investigate further the importance of stromal-derived IL11 in the inflammatory bowel phenotype we used a second model with fibroblast-specific expression of IL11, the Il11Fib mouse. This additional model largely phenocopied the Il11SMC bowel phenotype. These data show that IL11 secretion from the stromal niche is sufficient to drive inflammatory bowel disease in mice. Given that IL11 expression in colonic stromal cells predicts anti-TNF therapy failure in patients with ulcerative colitis or Crohn's disease, we suggest IL11 as a therapeutic target for inflammatory bowel disease.


Assuntos
Fibroblastos/patologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Interleucina-11/genética , Fenótipo , Animais , Colo/patologia , Progressão da Doença , Fibrose , Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia
8.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443187

RESUMO

Background: New treatments are needed to reduce myocardial infarct size (MI) and prevent heart failure (HF) following acute myocardial infarction (AMI), which are the leading causes of death and disability worldwide. Studies in rodent AMI models showed that genetic and pharmacological inhibition of mitochondrial fission, induced by acute ischemia and reperfusion, reduced MI size. Whether targeting mitochondrial fission at the onset of reperfusion is also cardioprotective in a clinically-relevant large animal AMI model remains to be determined. Methods: Adult pigs (30-40 kg) were subjected to closed-chest 90-min left anterior descending artery ischemia followed by 72 h of reperfusion and were randomized to receive an intracoronary bolus of either mdivi-1 (1.2 mg/kg, a small molecule inhibitor of the mitochondrial fission protein, Drp1) or vehicle control, 10-min prior to reperfusion. The left ventricular (LV) size and function were both assessed by transthoracic echocardiography prior to AMI and after 72 h of reperfusion. MI size and the area-at-risk (AAR) were determined using dual staining with Tetrazolium and Evans blue. Heart samples were collected for histological determination of fibrosis and for electron microscopic analysis of mitochondrial morphology. Results: A total of 14 pigs underwent the treatment protocols (eight control and six mdivi-1). Administration of mdivi-1 immediately prior to the onset of reperfusion did not reduce MI size (MI size as % of AAR: Control 49.2 ± 8.6 vs. mdivi-1 50.5 ± 11.4; p = 0.815) or preserve LV systolic function (LV ejection fraction %: Control 67.5 ± 0.4 vs. mdivi-1 59.6 ± 0.6; p = 0.420), when compared to vehicle control. Similarly, there were no differences in mitochondrial morphology or myocardial fibrosis between mdivi-1 and vehicle control groups. Conclusion: Our pilot study has shown that treatment with mdivi-1 (1.2 mg/kg) at the onset of reperfusion did not reduce MI size or preserve LV function in the clinically-relevant closed-chest pig AMI model. A larger study, testing different doses of mdivi-1 or using a more specific Drp1 inhibitor are required to confirm these findings.


Assuntos
Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Quinazolinonas/uso terapêutico , Animais , Modelos Animais de Doenças , Ecocardiografia , Feminino , Dinâmica Mitocondrial/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Projetos Piloto , Suínos , Função Ventricular Esquerda/efeitos dos fármacos
9.
Stem Cell Reports ; 12(3): 597-610, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30799273

RESUMO

The relationship between diabetes and endothelial dysfunction remains unclear, particularly the association with pathological activation of calpain, an intracellular cysteine protease. Here, we used human induced pluripotent stem cells-derived endothelial cells (iPSC-ECs) to investigate the effects of diabetes on vascular health. Our results indicate that iPSC-ECs exposed to hyperglycemia had impaired autophagy, increased mitochondria fragmentation, and was associated with increased calpain activity. In addition, hyperglycemic iPSC-ECs had increased susceptibility to cell death when subjected to a secondary insult-simulated ischemia-reperfusion injury (sIRI). Importantly, calpain inhibition restored autophagy and reduced mitochondrial fragmentation, concurrent with maintenance of ATP production, normalized reactive oxygen species levels and reduced susceptibility to sIRI. Using a human iPSC model of diabetic endotheliopathy, we demonstrated that restoration of autophagy and prevention of mitochondrial fragmentation via calpain inhibition improves vascular integrity. Our human iPSC-EC model thus represents a valuable platform to explore biological mechanisms and new treatments for diabetes-induced endothelial dysfunction.


Assuntos
Autofagia/efeitos dos fármacos , Calpaína/antagonistas & inibidores , Complicações do Diabetes/tratamento farmacológico , Glicoproteínas/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Doenças Vasculares/tratamento farmacológico , Células Cultivadas , Complicações do Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doenças Vasculares/metabolismo
10.
Expert Opin Ther Targets ; 22(3): 247-261, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29417868

RESUMO

INTRODUCTION: New treatments are required to improve clinical outcomes in patients with acute myocardial infarction (AMI), for reduction of myocardial infarct (MI) size and preventing heart failure. Following AMI, acute ischemia/reperfusion injury (IRI) ensues, resulting in cardiomyocyte death and impaired cardiac function. Emerging studies have implicated a fundamental role for non-coding RNAs (microRNAs [miRNA], and more recently long non-coding RNAs [lncRNA]) in the setting of acute myocardial IRI. Areas covered: In this article, we discuss the roles of miRNAs and lncRNAs as potential biomarkers and therapeutic targets for the detection and treatment of AMI, review their roles as mediators and effectors of cardioprotection, particularly in the settings of interventions such as ischemic pre- and post-conditioning (IPC & IPost) as well as remote ischemic conditioning (RIC), and highlight future strategies for targeting ncRNAs to reduce MI size and prevent heart failure following AMI. Expert opinion: Investigating the roles of miRNAs and lncRNAs in the setting of AMI has provided new insights into the pathophysiology underlying acute myocardial IRI, and has identified novel biomarkers and therapeutic targets for detecting and treating AMI. Pharmacological and genetic manipulation of these ncRNAs has the therapeutic potential to improve clinical outcomes in AMI patients.


Assuntos
Terapia de Alvo Molecular , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/prevenção & controle , Humanos , MicroRNAs/genética , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/patologia , RNA Longo não Codificante/genética
11.
Pharmacol Ther ; 186: 73-87, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29330085

RESUMO

Acute myocardial infarction (AMI) and the heart failure that often follows, are major causes of death and disability worldwide. As such, new therapies are required to limit myocardial infarct (MI) size, prevent adverse left ventricular (LV) remodeling, and reduce the onset of heart failure following AMI. The inflammatory response to AMI, plays a critical role in determining MI size, and a persistent pro-inflammatory reaction can contribute to adverse post-MI LV remodeling, making inflammation an important therapeutic target for improving outcomes following AMI. In this article, we provide an overview of the multiple players (and their dynamic roles) involved in the complex inflammatory response to AMI and subsequent LV remodeling, and highlight future opportunities for targeting inflammation as a therapeutic strategy for limiting MI size, preventing adverse LV remodeling, and reducing heart failure in AMI patients.


Assuntos
Anti-Inflamatórios/uso terapêutico , Insuficiência Cardíaca/prevenção & controle , Mediadores da Inflamação/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Remodelação Ventricular/efeitos dos fármacos , Animais , Anti-Inflamatórios/administração & dosagem , Modelos Animais de Doenças , Insuficiência Cardíaca/imunologia , Humanos , Inflamação , Infarto do Miocárdio/imunologia , Remodelação Ventricular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA