Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 203(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33753465

RESUMO

VxrA and VxrB are cognate histidine kinase (HK) - response regulator (RR) pairs of a two-component signaling system (TCS) found in Vibrio cholerae, a bacterial pathogen that causes cholera. The VxrAB TCS positively regulates virulence, the Type VI Secretion System, biofilm formation, and cell wall homeostasis in V. cholerae, providing protection from environmental stresses and contributing to the transmission and virulence of the pathogen. The VxrA HK has a unique periplasmic sensor domain (SD) and, remarkably, lacks a cytoplasmic linker domain between the second transmembrane helix and the dimerization and histidine phosphotransfer (DHp) domain, indicating that this system may utilize a potentially unique signal sensing and transmission TCS mechanism. In this study, we have determined several crystal structures of VxrA-SD and its mutants. These structures reveal a novel structural fold forming an unusual ß hairpin-swapped dimer. A conformational change caused by relative rotation of the two monomers in a VxrA-SD dimer could potentially change the association of transmembrane helices and, subsequently, the pairing of cytoplasmic DHp domains. Based on the structural observation, we propose a putative scissor-like closing regulation mechanism for the VxrA HK.IMPORTANCE V. cholerae has a dynamic life cycle, which requires rapid adaptation to changing external conditions. Two-component signal transduction (TCS) systems allow V. cholerae to sense and respond to these environmental changes. The VxrAB TCS positively regulates a number of important V. cholerae phenotypes, including virulence, the Type Six Secretion System, biofilm formation, and cell wall homeostasis. Here, we provide the crystal structure of the VxrA sensor histidine kinase sensing domain and propose a mechanism for signal transduction. The cognate signal for VxrAB remains unknown, however, in this work we couple our structural analysis with functional assessments of key residues to further our understanding of this important TCS.

2.
Geroscience ; 43(2): 593-606, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32974878

RESUMO

Key processes characterizing human aging are immunosenescence and inflammaging. The capacity of the immune system to adequately respond to external perturbations (e.g., pathogens, injuries, and biochemical irritants) and to repair somatic mutations that may cause cancers or cellular senescence declines. An important goal remains to identify genetic or biochemical, predictive biomarkers for healthy aging. We recruited two cohorts in the age range 70 to 82, one afflicted by chronic illnesses (non-healthy aging, NHA) and the other in good health (healthy aging, HA). NHA criteria included major cardiovascular, neurodegenerative, and chronic pulmonary diseases, diabetes, and cancers. Quantitative analysis of forty proinflammatory cytokines in blood plasma and more than 500 proteins in urine was performed to identify candidate biomarkers for and biological pathway implications of healthy aging. Nine cytokines revealed lower quantities in blood plasma for the NHA compared with the HA groups (fold change > 1.5; p value < 0.025) including IL-12p40 and IL-12p70. We note that, sampling at two timepoints, intra-individual cytokine abundance patterns clustered in 86% of all 60 cases, indicative of person-specific, highly controlled multi-cytokine signatures in blood plasma. Twenty-three urinary proteins were differentially abundant (HA versus NHA; fold change > 1.5; p value < 0.01). Among the proteins increased in abundance in the HA cohort were glycoprotein MUC18, ephrin type-B receptor 4, matrix remodeling-associated protein 8, angiopoietin-related protein 2, K-cadherin, and plasma protease C1 inhibitor. These proteins have been linked to the extracellular matrix, cell adhesion, and vascular remodeling and repair processes. In silico network analysis identified the regulation of coagulation, antimicrobial humoral immune responses, and the IL-12 signaling pathway as enriched GO terms. To validate links of these preliminary biomarkers and IL-12 signaling with healthy aging, clinical studies using larger cohorts and functional characterization of the genes/proteins in cellular models of aging need to be conducted.


Assuntos
Envelhecimento Saudável , Interleucina-12 , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Humanos , Plasma , Transdução de Sinais
3.
Microorganisms ; 8(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899353

RESUMO

The leptin receptor-deficient db/db mouse model is an accepted in vivo model to study obesity, type 2 diabetes, and diabetic kidney disease. Healthy gastrointestinal (GI) microbiota has been linked to weight loss, improved glycemic control, and physiological benefits. We investigated the effect of various drugs on the GI microbiota of db/db mice as compared to control db/m mice. Treatment with long-acting pirfenidone (PFD) increased gut microbial diversity in diabetic db/db mice. Firmicutes, the most abundant phylum in db/m mice, decreased significantly in abundance in db/db mice but showed increased abundance with long-acting PFD treatment. Several bacterial taxa, including Lactobacillus and some Bacteroides, were less abundant in db/db mice and more abundant in long-acting-PFD-treated db/db mice. Long-acting PFD treatment reduced the abundance of Akkermansia muciniphila (5%) as compared to db/db mice (~15%). We conclude that gut microbial dysbiosis observed in db/db mice was partially reversed by long-acting PFD treatment and hypothesize that PFD has beneficial effects, in part, via its influence on the gut microbial metabolite profile. In quantitatively assessing urine metabolites, we observed a high abundance of diabetic ketoacidosis biomarkers, including 3-hydroxybutyric acid and acetoacetic acid in db/db mice, which were less abundant in the long-acting-PFD-treated db/db mice.

4.
Int J Oral Maxillofac Surg ; 49(3): 285-291, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31492478

RESUMO

The purpose of this study was to analyze the oncological outcomes and predictive factors for successful curative salvage surgery after recurrent oral cavity squamous cell carcinoma. A retrospective study was conducted involving 73 patients who received surgery-based salvage treatment. The pattern of failure for primary treatment was local failure in 29 patients, regional failure in 29 patients, and loco-regional failure in 15 patients. The 5-year overall, loco-regional failure-free, and disease-free survival rates were 54.8%, 58.9% and 49.3%, respectively. Patients with an advanced initial N stage, previous treatment with combined modality therapy, loco-regional recurrence, advanced recurrent T stage, a disease-free survival of less than 8 months prior to salvage, and recurrence in a previously treated field had a significantly worse prognosis. Given the potential surgical morbidity, salvage surgery should be undertaken after careful consultation with patients who have factors for a poor prognosis.


Assuntos
Carcinoma de Células Escamosas , Terapia de Salvação , Análise Fatorial , Humanos , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos
5.
Methods Mol Biol ; 2091: 163-179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31773580

RESUMO

Protein purification is the most basic and critical step for protein biophysical and biochemical studies to understand its function and structure. Various fusion tags and proteases have been developed and assembled in expression and purification system. However, it is one of the fields that continues to innovate to develop improved systems that are more efficient, simpler, and less expensive. An efficient self-cleavage C-terminal fusion system was developed using the inositol hexakisphosphate-inducible Vibrio cholerae MARTXVc toxin cysteine protease domain (CPD). CPD fusion proteins are expressed from the T7 promoter and purified using a 6xHis-tag with immobilized-metal affinity chromatography. The C-terminal CPD-tag is removed by self-cleavage at the final purification stage. Here, we describe an efficient cloning method using Gibson assembly, followed by expression and purification of tagless recombinant proteins of interest using CPD self-cleavage.


Assuntos
Toxinas Bacterianas/química , Clonagem Molecular/métodos , Ácido Fítico/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Cromatografia de Afinidade , Histidina/química , Domínios Proteicos , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
Methods Mol Biol ; 2021: 241-257, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309510

RESUMO

Neutrophils are important mediators of the antimicrobial defense during urinary tract infections (UTIs). When activated at the site of infection, these innate immune cells phagocytose and neutralize an invading pathogen. Another neutrophil defense strategy is the release of effectors, such as antimicrobial peptides and proteins stored in neutrophil granules and reactive oxygen species. Their release can be facilitated by cellular signals that trigger chromatic decondensation and the disruption of nuclear membranes, followed by granule and plasma membrane disintegration, DNA release into the extracellular milieu, and neutrophil cell death. Neutrophil extracellular traps (NETs) form. If microbial pathogens are the cause of neutrophil infiltration, they are entrapped in the network of DNA fibers that characterize NETs and are exposed to antimicrobial granule effectors and histones that bind to the extracellular DNA fibers. Here, we describe nonmicroscopic methods applied to clinical (urine sediment) samples to identify and characterize NETs associated with UTI. A stepwise extraction procedure using PBS, deoxyribonuclease I digestion and SDS-based solubilization is described. This is followed by native gel analysis to visualize protein-DNA macromolecular assemblies and proteomic analysis to identify signature proteins and their quantities in NETs. Microbes observed to be entrapped in NETs in the process of the innate immune response to the infection are Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, and Enterococcus faecalis.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/imunologia , Proteômica/métodos , Infecções Urinárias/imunologia , Urina/química , Humanos , Imunidade Inata , Infiltração de Neutrófilos
7.
Int J Biol Macromol ; 136: 1176-1187, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31207330

RESUMO

The de novo pyrimidine biosynthesis pathway is essential for the proliferation of many pathogens. One of the pathway enzymes, dihydroorotase (DHO), catalyzes the reversible interconversion of N-carbamoyl-l-aspartate to 4,5-dihydroorotate. The substantial difference between bacterial and mammalian DHOs makes it a promising drug target for disrupting bacterial growth and thus an important candidate to evaluate as a response to antimicrobial resistance on a molecular level. Here, we present two novel three-dimensional structures of DHOs from Yersinia pestis (YpDHO), the plague-causing pathogen, and Vibrio cholerae (VcDHO), the causative agent of cholera. The evaluations of these two structures led to an analysis of all available DHO structures and their classification into known DHO types. Comparison of all the DHO active sites containing ligands that are listed in DrugBank was facilitated by a new interactive, structure-comparison and presentation platform. In addition, we examined the genetic context of characterized DHOs, which revealed characteristic patterns for different types of DHOs. We also generated a homology model for DHO from Plasmodium falciparum.


Assuntos
Di-Hidro-Orotase/química , Di-Hidro-Orotase/metabolismo , Pirimidinas/biossíntese , Vibrio cholerae/enzimologia , Yersinia pestis/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Di-Hidro-Orotase/genética , Genômica , Malatos/metabolismo , Modelos Moleculares , Homologia de Sequência de Aminoácidos , Zinco/metabolismo
8.
FEBS J ; 285(15): 2900-2921, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29917313

RESUMO

Vibrio cholerae, the causative pathogen of the life-threatening infection cholera, encodes two copies of ß-ketoacyl-acyl carrier protein synthase III (vcFabH1 and vcFabH2). vcFabH1 and vcFabH2 are pathogenic proteins associated with fatty acid synthesis, lipid metabolism, and potential applications in biofuel production. Our biochemical assays characterize vcFabH1 as exhibiting specificity for acetyl-CoA and CoA thioesters with short acyl chains, similar to that observed for FabH homologs found in most gram-negative bacteria. vcFabH2 prefers medium chain-length acyl-CoA thioesters, particularly octanoyl-CoA, which is a pattern of specificity rarely seen in bacteria. Structural characterization of one vcFabH1 and six vcFabH2 structures determined in either apo form or in complex with acetyl-CoA/octanoyl-CoA indicate that the substrate-binding pockets of vcFabH1 and vcFabH2 are of different sizes, accounting for variations in substrate chain-length specificity. An unusual and unique feature of vcFabH2 is its C-terminal fragment that interacts with both the substrate-entrance loop and the dimer interface of the enzyme. Our discovery of the pattern of substrate specificity of both vcFabH1 and vcFabH2 can potentially aid the development of novel antibacterial agents against V. cholerae. Additionally, the distinctive substrate preference of FabH2 in V. cholerae and related facultative anaerobes conceivably make it an attractive component of genetically engineered bacteria used for commercial biofuel production.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Vibrio cholerae/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Acetilcoenzima A/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Antibacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocombustíveis , Cristalografia por Raios X , Cisteína/genética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
9.
Front Immunol ; 9: 747, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713324

RESUMO

Current vaccines against Streptococcus pneumoniae, a bacterial species that afflicts people by causing a wide spectrum of diseases, do not protect against all pneumococcal serotypes. Thus, alternative vaccines to fight pneumococcal infections that target common proteins are under investigation. One promising strategy is to take advantage of immune cross-reactivity between commensal and pathogenic microbes for cross-protection. In this study, we examined the antibody-mediated cross-reactivity between S. pneumoniae and Streptococcus mitis, a commensal species closely related to S. pneumoniae. Western blot analysis showed that rabbit antisera raised against S. mitis reacted with multiple proteins of virulent S. pneumoniae strains (6B, TIGR4, and D39). Rabbit anti-S. pneumoniae IgG antibodies also showed binding to S. mitis antigens. Incubation of rabbit antisera raised against S. mitis with heterologous or homologous bacterial lysates resulted in marked inhibition of the developments of bands in the Western blots. Furthermore, plasma IgG antibodies from adult human volunteers intranasally inoculated with S. pneumoniae 6B revealed enhanced S. mitis-specific IgG titers compared with the pre-inoculation samples. Using an on-chip protein microarray representing a number of selected membrane and extracellular S. pneumoniae proteins, we identified choline-binding protein D (CbpD), cell division protein (FtsH), and manganese ABC transporter or manganese-binding adhesion lipoprotein (PsaA) as common targets of the rabbit IgG antibodies raised against S. mitis or S. pneumoniae. Cumulatively, these findings provide evidence on the antibody-mediated cross-reactivity of proteins from S. mitis and S. pneumoniae, which may have implications for development of effective and wide-range pneumococcal vaccines.


Assuntos
Anticorpos Antibacterianos/imunologia , Imunoglobulina G/imunologia , Streptococcus mitis/imunologia , Streptococcus pneumoniae/imunologia , Adesinas Bacterianas/imunologia , Adulto , Amidoidrolases/imunologia , Animais , Proteínas de Bactérias/imunologia , Reações Cruzadas , Humanos , Lipoproteínas/imunologia , Coelhos , Sorogrupo
10.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29311240

RESUMO

Accurate diagnosis and early treatment of tuberculosis (TB) and latent TB infection (LTBI) are vital to prevent and control TB. The lack of specific biomarkers hinders these efforts. This study's purpose was to screen immunological markers that discriminate Mycobacterium tuberculosis infection outcomes in a setting where it is endemic, Ethiopia. Whole blood from 90 participants was stimulated using the ESAT-6/CFP-10 antigen cocktail. The interferon gamma (IFN-γ)-based QuantiFERON diagnostic test was used to distinguish between LTBI and uninfected control cases. Forty cytokines/chemokines were detected from antigen-stimulated plasma supernatants (SPSs) and unstimulated plasma samples (UPSs) using human cytokine/chemokine antibody microarrays. Statistical tests allowed us to identify potential biomarkers that distinguish the TB, LTBI, and healthy control groups. As expected, the levels of IFN-γ in SPSs returned a high area under the receiver operating characteristic curve (AUC) value comparing healthy controls and LTBI cases (Z = 0.911; P < 0.001). The SPS data also indicated that interleukin 17 (IL-17) abundance discriminates LTBI from healthy controls (Z = 0.763; P = 0.001). RANTES and MIP-1ß were significantly elevated in SPSs of TB-infected compared to healthy controls (P < 0.05), while IL-12p40 and soluble tumor necrosis factor receptor II (sTNF-RII) were significantly increased in active TB cases compared to the combined LTBI and control groups (P < 0.05). Interestingly, quantitative changes for RANTES were observed using both SPSs and UPSs, with P values of 0.013 and 0.012, respectively, in active TB versus LTBI cases and 0.001 and 0.002, respectively, in active TB versus healthy controls. These results encourage biomarker verification studies for IL-17 and RANTES. Combinations of these cytokines may complement IFN-γ measurements to diagnose LTBI and distinguish active TB from LTBI cases.


Assuntos
Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Adulto , Biomarcadores , Estudos de Casos e Controles , Citocinas/sangue , Citocinas/metabolismo , Etiópia/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Tuberculose/epidemiologia , Tuberculose/metabolismo , Adulto Jovem
11.
PLoS One ; 12(11): e0188071, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176882

RESUMO

Coxiella burnetii is an obligate Gram-negative intracellular pathogen and the etiological agent of Q fever. Successful infection requires a functional Type IV secretion system, which translocates more than 100 effector proteins into the host cytosol to establish the infection, restructure the intracellular host environment, and create a parasitophorous vacuole where the replicating bacteria reside. We used yeast two-hybrid (Y2H) screening of 33 selected C. burnetii effectors against whole genome human and murine proteome libraries to generate a map of potential host-pathogen protein-protein interactions (PPIs). We detected 273 unique interactions between 20 pathogen and 247 human proteins, and 157 between 17 pathogen and 137 murine proteins. We used orthology to combine the data and create a single host-pathogen interaction network containing 415 unique interactions between 25 C. burnetii and 363 human proteins. We further performed complementary pairwise Y2H testing of 43 out of 91 C. burnetii-human interactions involving five pathogen proteins. We used the combined data to 1) perform enrichment analyses of target host cellular processes and pathways, 2) examine effectors with known infection phenotypes, and 3) infer potential mechanisms of action for four effectors with uncharacterized functions. The host-pathogen interaction profiles supported known Coxiella phenotypes, such as adapting cell morphology through cytoskeletal re-arrangements, protein processing and trafficking, organelle generation, cholesterol processing, innate immune modulation, and interactions with the ubiquitin and proteasome pathways. The generated dataset of PPIs-the largest collection of unbiased Coxiella host-pathogen interactions to date-represents a rich source of information with respect to secreted pathogen effector proteins and their interactions with human host proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/metabolismo , Interações Hospedeiro-Patógeno , Animais , Sequência Conservada , Ontologia Genética , Humanos , Camundongos , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
12.
Ann Otol Rhinol Laryngol ; 126(5): 349-356, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28397562

RESUMO

OBJECTIVES: This retrospective study was carried out to investigate the effectiveness and safety of office-based electromyography-guided injection of botulinum toxin in the cricopharyngeus muscle of patients who did not show upper esophageal sphincter passage in a swallowing study in spite of maximal swallowing rehabilitation. METHODS: Thirty-six patients who showed no or limited ability to oral feed after maximum swallowing rehabilitation were enrolled. Video fluoroscopic swallowing study, flexible endoscopic evaluation of swallowing, disability rating scale, penetration aspiration score, and National Institutes of Health swallowing safety scale were used in the evaluation of dysphagia. RESULTS: Success was defined as nondependence on gastrostomy for patients who previously were dependent on gastrostomy and improvement in disability rating scale score after botulinum toxin injections. The total success rate was 63.9%. The complication rate was very low, with only 1 patient showing temporary unilateral vocal fold paralysis. Botulinum toxin injection was more effective in patients with cranial nerve IX or X palsy than in those without it ( P = .006). CONCLUSIONS: This procedure can be a simple, safe, and effective tool in patients with cricopharyngeal dysfunction after swallowing rehabilitation, especially for cranial nerve IX or X palsy.


Assuntos
Toxinas Botulínicas Tipo A/administração & dosagem , Transtornos de Deglutição , Deglutição/efeitos dos fármacos , Eletromiografia/métodos , Músculos Faríngeos , Adulto , Idoso , Transtornos de Deglutição/diagnóstico , Transtornos de Deglutição/fisiopatologia , Transtornos de Deglutição/terapia , Esfíncter Esofágico Superior/fisiopatologia , Feminino , Humanos , Injeções Intramusculares , Pessoa de Meia-Idade , Fármacos Neuromusculares/administração & dosagem , Seleção de Pacientes , Músculos Faríngeos/diagnóstico por imagem , Músculos Faríngeos/fisiopatologia , República da Coreia , Estudos Retrospectivos , Resultado do Tratamento
13.
BMC Biotechnol ; 17(1): 1, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056928

RESUMO

BACKGROUND: Recombinant protein purification is a crucial step for biochemistry and structural biology fields. Rapid robust purification methods utilize various peptide or protein tags fused to the target protein for affinity purification using corresponding matrices and to enhance solubility. However, affinity/solubility-tags often need to be removed in order to conduct functional and structural studies, adding complexities to purification protocols. RESULTS: In this work, the Vibrio cholerae MARTX toxin Cysteine Protease Domain (CPD) was inserted in a ligation-independent cloning (LIC) vector to create a C-terminal 6xHis-tagged inducible autoprocessing enzyme tag, called "the CPD-tag". The pCPD and alternative pCPD/ccdB cloning vectors allow for easy insertion of DNA and expression of the target protein fused to the CPD-tag, which is removed at the end of the purification step by addition of the inexpensive small molecule inositol hexakisphosphate to induce CPD autoprocessing. This process is demonstrated using a small bacterial membrane localization domain and for high yield purification of the eukaryotic small GTPase KRas. Subsequently, pCPD was tested with 40 proteins or sub-domains selected from a high throughput crystallization pipeline. CONCLUSION: pCPD vectors are easily used LIC compatible vectors for expression of recombinant proteins with a C-terminal CPD/6xHis-tag. Although intended only as a strategy for rapid tag removal, this pilot study revealed the CPD-tag may also increase expression and solubility of some recombinant proteins.


Assuntos
Clonagem Molecular/métodos , Cisteína Proteases/genética , Vetores Genéticos/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/genética , Vibrio cholerae/genética , Cisteína Proteases/isolamento & purificação , Histidina/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
14.
PLoS Pathog ; 13(1): e1006151, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28129394

RESUMO

Neutrophils have an important role in the antimicrobial defense and resolution of urinary tract infections (UTIs). Our research suggests that a mechanism known as neutrophil extracellular trap (NET) formation is a defense strategy to combat pathogens that have invaded the urinary tract. A set of human urine specimens with very high neutrophil counts had microscopic evidence of cellular aggregation and lysis. Deoxyribonuclease I (DNase) treatment resulted in disaggregation of such structures, release of DNA fragments and a proteome enriched in histones and azurophilic granule effectors whose quantitative composition was similar to that of previously described in vitro-formed NETs. The effector proteins were further enriched in DNA-protein complexes isolated in native PAGE gels. Immunofluorescence microscopy revealed a flattened morphology of neutrophils associated with decondensed chromatin, remnants of granules in the cell periphery, and myeloperoxidase co-localized with extracellular DNA, features consistent with early-phase NETs. Nuclear staining revealed that a considerable fraction of bacterial cells in these structures were dead. The proteomes of two pathogens, Staphylococcus aureus and Escherichia coli, were indicative of adaptive responses to early-phase NETs, specifically the release of virulence factors and arrest of ribosomal protein synthesis. Finally, we discovered patterns of proteolysis consistent with widespread cleavage of proteins by neutrophil elastase, proteinase 3 and cathepsin G and evidence of citrullination in many nuclear proteins.


Assuntos
Armadilhas Extracelulares/imunologia , Infecções Urinárias/imunologia , Western Blotting , Cromatografia Líquida , Humanos , Espectrometria de Massas
15.
Data Brief ; 7: 537-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27054155

RESUMO

The fluorescence-based thermal shift (FTS) data presented here include Table S1 and Fig. S1, and are supplemental to our original research article describing detailed structural, FTS, and fluorescence polarization analyses of the Salmonella enterica subsp. entrica serovar Typhimurium str. LT2 multidrug transcriptional regulator AcrR (StAcrR) (doi:10.1016/j.jsb.2016.01.008) (Manjasetty et al., 2015 [1]). Table S1 contains chemical formulas, a Chemical Abstracts Service (CAS) Registry Number (CAS no.), FTS rank (a ligand with the highest rank) has the largest difference in the melting temperature (ΔT m), and uses as drug molecules against various pathological conditions of sixteen small-molecule ligands that increase thermal stability of StAcrR. Thermal stability of human enolase 1, a negative control protein, was not affected in the presence of various concentrations of the top six StAcrR binders (Fig. S1).

16.
J Struct Biol ; 194(1): 18-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26796657

RESUMO

Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.


Assuntos
Proteínas de Bactérias/química , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Repressoras/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Homologia de Sequência do Ácido Nucleico
17.
Head Neck ; 38 Suppl 1: E287-92, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-25545463

RESUMO

BACKGROUND: The purpose of this study was to retrospectively analyze the feasibility of the surgical management of the carotid artery in advanced head and neck cancer with preoperative suspicion of carotid artery invasion. METHODS: A total of 47 patients were retrospectively analyzed. Twenty-one patients (44.7%) received surgery as initial treatment, and 26 patients (55.3%) had salvage surgical treatment for recurrences. Intraoperative dissection and preservation of the carotid artery was achieved in 39 patients (83%). Eight patients underwent carotid resection with/without reconstruction (17%). RESULTS: The cumulative 2-year and 5-year overall survival rates were 40.4% and 34%, and the disease-specific survival rates were 59.5% and 55.3%, respectively. The overall perioperative mortality rate was 6.4%. Carotid blowout developed in 6 patients. CONCLUSION: Surgical treatment of the carotid artery in selected patients can provide locoregional control and the possibility of prolonged disease-free survival with acceptable morbidity. © 2015 Wiley Periodicals, Inc. Head Neck 38: E287-E292, 2016.


Assuntos
Artérias Carótidas/patologia , Artérias Carótidas/cirurgia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/cirurgia , Invasividade Neoplásica , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/cirurgia , Taxa de Sobrevida
18.
BMC Genomics ; 16: 1106, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26714771

RESUMO

BACKGROUND: Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. RESULTS: We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. CONCLUSIONS: Direct interactions with specific host proteins and the ability to influence interactions among host proteins are important components for F. tularensis to avoid host-cell defense mechanisms and successfully establish an infection. Although direct host-pathogen protein-protein binding is only one aspect of Francisella virulence, it is a critical component in directly manipulating and interfering with cellular processes in the host cell.


Assuntos
Francisella tularensis/patogenicidade , Interações Hospedeiro-Patógeno/genética , Fatores de Virulência/metabolismo , Animais , Feminino , Francisella tularensis/genética , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica/genética , Ligação Proteica/fisiologia , Virulência/genética , Fatores de Virulência/genética
19.
PLoS Comput Biol ; 11(3): e1004088, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25738731

RESUMO

Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections and intracellular spread.


Assuntos
Burkholderia mallei/fisiologia , Burkholderia mallei/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Algoritmos , Animais , Proteínas de Bactérias/fisiologia , Análise por Conglomerados , Biologia Computacional , Adesões Focais , Mormo/microbiologia , Mormo/fisiopatologia , Humanos , Camundongos , Mapas de Interação de Proteínas/fisiologia , Transdução de Sinais/fisiologia , Fatores de Virulência/metabolismo
20.
Anal Chem ; 86(11): 5470-7, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24797144

RESUMO

Urine is an important, noninvasively collected body fluid source for the diagnosis and prognosis of human diseases. Liquid chromatography mass spectrometry (LC-MS) based shotgun proteomics has evolved as a sensitive and informative technique to discover candidate disease biomarkers from urine specimens. Filter-aided sample preparation (FASP) generates peptide samples from protein mixtures of cell lysate or body fluid origin. Here, we describe a FASP method adapted to 96-well filter plates, named 96FASP. Soluble urine concentrates containing ~10 µg of total protein were processed by 96FASP and LC-MS resulting in 700-900 protein identifications at a 1% false discovery rate (FDR). The experimental repeatability, as assessed by label-free quantification and Pearson correlation analysis for shared proteins among replicates, was high (R ≥ 0.97). Application to urinary pellet lysates which is of particular interest in the context of urinary tract infection analysis was also demonstrated. On average, 1700 proteins (±398) were identified in five experiments. In a pilot study using 96FASP for analysis of eight soluble urine samples, we demonstrated that protein profiles of technical replicates invariably clustered; the protein profiles for distinct urine donors were very different from each other. Robust, highly parallel methods to generate peptide mixtures from urine and other body fluids are critical to increase cost-effectiveness in clinical proteomics projects. This 96FASP method has potential to become a gold standard for high-throughput quantitative clinical proteomics.


Assuntos
Biomarcadores/urina , Proteômica/métodos , Urina/química , Adulto , Criança , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Tipo 1/urina , Células HEK293 , Humanos , Espectrometria de Massas , Projetos Piloto , Manejo de Espécimes , Infecções Urinárias/diagnóstico , Infecções Urinárias/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA