Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 6, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172811

RESUMO

BACKGROUND: Clostridium sp. AWRP (AWRP) is a novel acetogenic bacterium isolated under high partial pressure of carbon monoxide (CO) and can be one of promising candidates for alcohol production from carbon oxides. Compared to model strains such as C. ljungdahlii and C. autoethanogenum, however, genetic manipulation of AWRP has not been established, preventing studies on its physiological characteristics and metabolic engineering. RESULTS: We were able to demonstrate the genetic domestication of AWRP, including transformation of shuttle plasmids, promoter characterization, and genome editing. From the conjugation experiment with E. coli S17-1, among the four replicons tested (pCB102, pAMß1, pIP404, and pIM13), three replicated in AWRP but pCB102 was the only one that could be transferred by electroporation. DNA methylation in E. coli significantly influenced transformation efficiencies in AWRP: the highest transformation efficiencies (102-103 CFU/µg) were achieved with unmethylated plasmid DNA. Determination of strengths of several clostridial promoters enabled the establishment of a CRISPR/Cas12a genome editing system based on Acidaminococcus sp. BV3L6 cas12a gene; interestingly, the commonly used CRISPR/Cas9 system did not work in AWRP, although it expressed the weakest promoter (C. acetobutylicum Pptb) tested. This system was successfully employed for the single gene deletion (xylB and pyrE) and double deletion of two prophage gene clusters. CONCLUSIONS: The presented genome editing system allowed us to achieve several genome manipulations, including double deletion of two large prophage groups. The genetic toolbox developed in this study will offer a chance for deeper studies on Clostridium sp. AWRP for syngas fermentation and carbon dioxide (CO2) sequestration.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Escherichia coli/genética , Edição de Genes , Clostridium/genética , Clostridium/metabolismo , Engenharia Metabólica
2.
Front Microbiol ; 14: 1279544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37933250

RESUMO

Acetogenic bacteria can utilize C1 compounds, such as carbon monoxide (CO), formate, and methanol, via the Wood-Ljungdahl pathway (WLP) to produce biofuels and biochemicals. Two novel acetogenic bacteria of the family Eubacteriaceae ES2 and ES3 were isolated from Eulsukdo, a delta island in South Korea. We conducted whole genome sequencing of the ES strains and comparative genome analysis on the core clusters of WLP with Acetobacterium woodii DSM1030T and Eubacterium limosum ATCC8486T. The methyl-branch cluster included a formate transporter and duplicates or triplicates copies of the fhs gene, which encodes formyl-tetrahydrofolate synthetase. The formate dehydrogenase cluster did not include the hydrogenase gene, which might be replaced by a functional complex with a separate electron bifurcating hydrogenase (HytABCDE). Additionally, duplicated copies of the acsB gene, encoding acetyl-CoA synthase, are located within or close to the carbonyl-branch cluster. The serum bottle culture showed that ES strains can utilize a diverse range of C1 compounds, including CO, formate, and methanol, as well as CO2. Notably, ES2 exhibited remarkable resistance to high concentrations of C1 substrates, such as 100% CO (200 kPa), 700 mM formate, and 500 mM methanol. Moreover, ES2 demonstrated remarkable growth rates under 50% CO (0.45 h-1) and 200 mM formate (0.34 h-1). These growth rates are comparable to or surpassing those previously reported in other acetogenic bacteria. Our study introduces novel acetogenic ES strains and describes their genetic and physiological characteristics, which can be utilized in C1-based biomanufacturing.

3.
Front Microbiol ; 13: 982442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569090

RESUMO

In this study, we report the phenotypic changes that occurred in the acetogenic bacterium Clostridium sp. AWRP as a result of an adaptive laboratory evolution (ALE) under the acetate challenge. Acetate-adapted strain 46 T-a displayed acetate tolerance to acetate up to 10 g L-1 and increased ethanol production in small-scale cultures. The adapted strain showed a higher cell density than AWRP even without exogenous acetate supplementation. 46 T-a was shown to have reduced gas consumption rate and metabolite production. It was intriguing to note that 46 T-a, unlike AWRP, continued to consume H2 at low CO2 levels. Genome sequencing revealed that the adapted strain harbored three point mutations in the genes encoding an electron-bifurcating hydrogenase (Hyt) crucial for autotrophic growth in CO2 + H2, in addition to one in the dnaK gene. Transcriptome analysis revealed that most genes involved in the CO2-fixation Wood-Ljungdahl pathway and auxiliary pathways for energy conservation (e.g., Rnf complex, Nfn, etc.) were significantly down-regulated in 46 T-a. Several metabolic pathways involved in dissimilation of nucleosides and carbohydrates were significantly up-regulated in 46 T-a, indicating that 46 T-a evolved to utilize organic substrates rather than CO2 + H2. Further investigation into degeneration in carbon fixation of the acetate-adapted strain will provide practical implications for CO2 + H2 fermentation using acetogenic bacteria for long-term continuous fermentation.

4.
Biotechnol Biofuels ; 12: 228, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572495

RESUMO

BACKGROUND: Gas-fermenting acetogens have received a great deal of attention for their ability to grow on various syngas and waste gas containing carbon monoxide (CO), producing acetate as the primary metabolite. Among them, some Clostridium species, such as C. ljungdahlii and C. autoethanogenum, are of particular interest as they produce fuel alcohols as well. Despite recent efforts, alcohol production by these species is still unsatisfactory due to their low productivity and acetate accumulation, necessitating the isolation of strains with better phenotypes. RESULTS: In this study, a novel alcohol-producing acetogen (Clostridium sp. AWRP) was isolated, and its complete genome was sequenced. This bacterium belongs the same phylogenetic group as C. ljungdahlii, C. autoethanogenum, C. ragsdalei, and C. coskatii based on 16S rRNA homology; however, the levels of genome-wide average nucleotide identity (gANI) for strain AWRP compared with these strains range between 95 and 96%, suggesting that this strain can be classified as a novel species. In addition, strain AWRP produced a substantial amount of ethanol (70-90 mM) from syngas in batch serum bottle cultures, which was comparable to or even exceeded the typical values obtained using its close relatives cultivated under similar conditions. In a batch bioreactor, strain AWRP produced 119 and 12 mM of ethanol and 2,3-butanediol, respectively, while yielding only 1.4 mM of residual acetate. Interestingly, the alcohologenesis of this strain was strongly affected by oxidoreduction potential (ORP), which has not been reported with other gas-fermenting clostridia. CONCLUSION: Considering its ethanol production under low oxidoreduction potential (ORP) conditions, Clostridium sp. AWRP will be an interesting host for biochemical studies to understand the physiology of alcohol-producing acetogens, which will contribute to metabolic engineering of those strains for the production of alcohols and other value-added compounds from syngas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA