Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959968

RESUMO

In tire tread applications, achieving enhanced abrasion resistance, wet grip, and rolling resistance is crucial for optimizing overall performance. To realize improvements in these attributes for silica-filled tire tread compounds, it becomes imperative to improve the dispersity of silica filler by investigating the effect of each component in the tire tread compound. In this work, we study the effect of styrene content within solution styrene butadiene rubber (SSBR) on the properties of tire tread compounds. A higher styrene segment within SSBR contributes to increased silica dispersion and crosslink density. Thus, tire tread compounds featuring SSBR with increased styrene content not only improve physical and mechanical properties, but also enhance major characteristics tailored for tire tread applications. These findings provide valuable insights into advancing the reinforced performance of tire tread compounds through the strategic utilization of SSBR enriched in styrene content.

2.
Am J Public Health ; 111(11): 1997-2007, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34709859

RESUMO

Objectives. To test whether fruit drink countermarketing messages alone or combined with water promotion messages reduce Latinx parents' purchases of fruit drinks for children aged 0 to 5 years. Methods. We performed a 3-arm randomized controlled online trial enrolling 1628 Latinx parents in the United States during October and November 2019. We assessed the effect of culturally tailored fruit drink countermarketing messages (fruit drink‒only group), countermarketing and water promotion messages combined (combination group), or car-seat safety messages (control) delivered via Facebook groups for 6 weeks on parental beverage choices from a simulated online store. Results. The proportion of parents choosing fruit drinks decreased by 13.7 percentage points in the fruit drink‒only group (95% confidence interval [CI] = -20.0, -7.4; P < .001) and by 19.2 percentage points in the combination group (95% CI = -25.0, -13.4; P < .001) relative to control. Water selection increased in both groups. Conclusions. Fruit drink countermarketing messages, alone or combined with water promotion messages, significantly decreased parental selection of fruit drinks and increased water selection for their children. Public Health Implications. Countermarketing social media messages may be an effective and low-cost intervention for reducing parents' fruit drink purchases for their children. (Am J Public Health. 2021;111(11):1997-2007. https://doi.org/10.2105/AJPH.2021.306488).


Assuntos
Comportamento do Consumidor/economia , Frutas , Promoção da Saúde/métodos , Mídias Sociais , Bebidas Adoçadas com Açúcar/economia , Água , Pré-Escolar , Feminino , Hispânico ou Latino , Humanos , Lactente , Recém-Nascido , Masculino , Estados Unidos
3.
ACS Appl Mater Interfaces ; 13(13): 15827-15836, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33779141

RESUMO

Two-dimensional graphene is of great interest for electromagnetic interference (EMI) shielding owing to its inherent electrical conductivity, lightweight, and excellent mechanical flexibility even at minor thicknesses. However, the complex synthesis and quality-control difficulties limit its application. In this study, we demonstrate that electrochemically exfoliated graphene (EEG) with post-reduction treatment is a promising candidate for lightweight EMI shielding materials. A facile electrochemical exfoliation approach produces a high-quality multilayer graphene with a high electrical conductivity of ∼600 S cm-1, owing to its low degree of oxidation. The reduction of EEG by three different methods, including chemical, thermal, and microwave treatments, causes the removal of surface functional groups as well as significant changes in the microstructure of the final films. The reduced graphene films by microwaves, which are driven by the improved electrical conductivity and large volume expansion, exhibit an EMI shielding effectiveness of 108 dB at a thickness of 125 µm, one of the largest EMI shielding values ever reported for graphene at comparable thicknesses.

4.
Korean J Orthod ; 49(6): 349-359, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31815103

RESUMO

OBJECTIVE: The aim of this study was to analyze three-dimensional (3D) changes in maxillary dentition in Class II malocclusion treatment using arch wire with continuous tip-back bends or compensating curve, together with intermaxillary elastics by superimposing 3D virtual models. METHODS: The subjects were 20 patients (2 men and 18 women; mean age 20 years 7 months ± 3 years 9 months) with Class II malocclusion treated using 0.016 × 0.022-inch multiloop edgewise arch wire with continuous tip-back bends or titanium molybdenum alloy ideal arch wire with compensating curve, together with intermaxillary elastics. Linear and angular measurements were performed to investigate maxillary teeth displacement by superimposing pre- and post-treatment 3D virtual models using Rapidform 2006 and analyzing the results using paired t-tests. RESULTS: There were posterior displacement of maxillary teeth (p < 0.01) with distal crown tipping of canine, second premolar and first molar (p < 0.05), expansion of maxillary arch (p < 0.05) with buccoversion of second premolar and first molar (p < 0.01), and distal-in rotation of first molar (p < 0.01). Reduced angular difference between anterior and posterior occlusal planes (p < 0.001), with extrusion of anterior teeth (p < 0.05) and intrusion of second premolar and first molar (p < 0.001) was observed. CONCLUSIONS: Class II treatment using an arch wire with continuous tip-back bends or a compensating curve, together with intermaxillary elastics, could retract and expand maxillary dentition, and reduce occlusal curvature. These results will help clinicians in understanding the mechanism of this Class II treatment.

5.
ACS Appl Mater Interfaces ; 9(34): 29063-29070, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28782936

RESUMO

Ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA) are assembled into bending ionic polymer actuators. CuPCSA is an organic filler with very high sulfonation degree (IEC = 4.5 mmol H+/g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane, probably due to its good dispersibility in SPAES-containing solutions. SPAES/CuPCSA actuators exhibit larger ion conductivity (102 mS cm-1), tensile modulus (208 MPa), strength (101 MPa), and strain (1.21%), exceptionally faster response to electrical stimuli, and larger mechanical power density (3028 W m-3) than ever reported for ion-conducting polymer actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next-generation transducers with high power density, which are currently developed, e.g., for underwater propulsion and endoscopic surgery.

6.
Plant Pathol J ; 32(3): 216-27, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27298597

RESUMO

Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from -2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression.

7.
Biomater Res ; 18: 11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26331062

RESUMO

BACKGROUND: Scaffolds are one of the three most important elements constituting the basic concept of regenerative medicine, and are included in the core technology of regenerative medicine along with stem cells and tissue engineering. Stem cells are very important technology because they are directly responsible for the regenerative treatment of the disease and the damaged tissue, but with regards to the technology and the products that use stem cells exclusively, there is a technical limitation of limited survival rate and the engraftment rate of the transplanted cell, and rather than recovering the damaged tissue fundamentally, there is a limit that the concept is more of just another medicine treatment using cells. A scaffold is a natural or synthetic biocompatible material transplanted into a human body to be used as the exclusive treatment or as an assisted method of another treatment of a disease and for the recovery of damaged tissue. Therefore, according to the characteristics of the tissue to be applied, scaffolds must have the characteristics such as the excellent biocompatibility, biodegradability, minimum immunity and inflammation, proper mechanical strength and interaction between the material and the cells. RESULTS: The world stem cell market was approximately 2.715 billion dollars in 2010, and with a growth rate of 16.8% annually, a market of 6.877 billion dollars will be formed in 2016. From 2017, the expected annual growth rate is 10.6%, which would expand the market to 11.38 billion dollars by 2021. Meanwhile, the world scaffold element technology market was approximately 4.57 million dollars in 2013, and by increasing 13.4% annually, it is estimated to expand to 10.63 million dollars by 2020. The Korean scaffold element technology market was about 22 million dollars in 2013, and with a steady growth of approximately 13.4% every year, it is prospected to be about 52 million dollars by 2020. CONCLUSIONS: In comparison to the medical material and medicine sales growth rate, the future scaffold element technology market is judged to be higher in growth possibility.

8.
J Nanosci Nanotechnol ; 13(10): 7152-4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24245215

RESUMO

Bare and ZrO2-coated LiCoO2 thin films were fabricated by direct current magnetron sputtering method on STS304 substrates. Deposited both films have a well-crystallized structure with (003) preferred orientation after annealing at 600 degrees C. The ZrO2-coated LiCoO2 thin film provide significantly improved cycling stability compared to bare LiCoO2 thin film at high cut-off potential (3.0-4.5 V). The improvement in electrochemical stability is attributed to the structural stability by ZrO2 coating layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA