Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 40(1): 22-36, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896561

RESUMO

In many species, vocal communication is essential for coordinating social behaviors including courtship, mating, parenting, rivalry, and alarm signaling. Effective communication requires accurate production, detection, and classification of signals, as well as selection of socially appropriate responses. Understanding how signals are generated and how acoustic signals are perceived is key to understanding the neurobiology of social behaviors. Here we review our long-standing research program focused on Xenopus, a frog genus which has provided valuable insights into the mechanisms and evolution of vertebrate social behaviors. In Xenopus laevis, vocal signals differ between the sexes, through development, and across the genus, reflecting evolutionary divergence in sensory and motor circuits that can be interrogated mechanistically. Using two ex vivo preparations, the isolated brain and vocal organ, we have identified essential components of the vocal production system: the sexually differentiated larynx at the periphery, and the hindbrain vocal central pattern generator (CPG) centrally, that produce sex- and species-characteristic sound pulse frequencies and temporal patterns, respectively. Within the hindbrain, we have described how intrinsic membrane properties of neurons in the vocal CPG generate species-specific vocal patterns, how vocal nuclei are connected to generate vocal patterns, as well as the roles of neurotransmitters and neuromodulators in activating the circuit. For sensorimotor integration, we identified a key forebrain node that links auditory and vocal production circuits to match socially appropriate vocal responses to acoustic features of male and female calls. The availability of a well supported phylogeny as well as reference genomes from several species now support analysis of the genetic architecture and the evolutionary divergence of neural circuits for vocal communication. Xenopus thus provides a vertebrate model in which to study vocal communication at many levels, from physiology, to behavior, and from development to evolution. As one of the most comprehensively studied phylogenetic groups within vertebrate vocal communication systems, Xenopus provides insights that can inform social communication across phyla.


Assuntos
Comunicação Animal , Rede Nervosa/fisiologia , Rombencéfalo/fisiologia , Vocalização Animal/fisiologia , Xenopus laevis/fisiologia , Estimulação Acústica , Animais , Cartilagem Aritenoide/fisiologia , Evolução Biológica , Geradores de Padrão Central/fisiologia , Feminino , Hormônios Esteroides Gonadais/fisiologia , Técnicas In Vitro , Músculos Laríngeos/fisiologia , Nervos Laríngeos/fisiologia , Masculino , Bulbo/fisiologia , Neurotransmissores/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Comportamento Social , Especificidade da Espécie
2.
Elife ; 82019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30618379

RESUMO

Listeners locate potential mates using species-specific vocal signals. As tetrapods transitioned from water to land, lungs replaced gills, allowing expiration to drive sound production. Some frogs then returned to water. Here we explore how air-driven sound production changed upon re-entry to preserve essential acoustic information on species identity in the secondarily aquatic frog genus Xenopus. We filmed movements of cartilage and muscles during evoked sound production in isolated larynges. Results refute the current theory for Xenopus vocalization, cavitation, and favor instead sound production by mechanical excitation of laryngeal resonance modes following rapid separation of laryngeal arytenoid discs. Resulting frequency resonance modes (dyads) are intrinsic to the larynx rather than due to neuromuscular control. Dyads are a distinctive acoustic signature. While their component frequencies overlap across species, their ratio is shared within each Xenopus clade providing information on species identity that could facilitate both conspecific localization and ancient species divergence. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Assuntos
Vocalização Animal/fisiologia , Água , Xenopus/fisiologia , Animais , Fenômenos Biomecânicos , Cartilagem/fisiologia , Laringe/fisiologia , Movimento (Física) , Filogenia , Som , Xenopus/anatomia & histologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-26572136

RESUMO

Mating depends on the accurate detection of signals that convey species identity and reproductive state. In African clawed frogs, Xenopus, this information is conveyed by vocal signals that differ in temporal patterns and spectral features between sexes and across species. We characterized spectral sensitivity using auditory-evoked potentials (AEPs), commonly known as the auditory brainstem response, in males and females of four Xenopus species. In female X. amieti, X. petersii, and X. laevis, peripheral auditory sensitivity to their species own dyad-two, species-specific dominant frequencies in the male advertisement call-is enhanced relative to males. Males were most sensitive to lower frequencies including those in the male-directed release calls. Frequency sensitivity was influenced by endocrine state; ovariectomized females had male-like auditory tuning while dihydrotestosterone-treated, ovariectomized females maintained female-like tuning. Thus, adult, female Xenopus demonstrate an endocrine-dependent sensitivity to the spectral features of conspecific male advertisement calls that could facilitate mating. Xenopus AEPs resemble those of other species in stimulus and level dependence, and in sensitivity to anesthetic (MS222). AEPs were correlated with body size and sex within some species. A frequency following response, probably encoded by the amphibian papilla, might facilitate dyad source localization via interaural time differences.


Assuntos
Percepção Auditiva/fisiologia , Sistema Endócrino/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Caracteres Sexuais , Vocalização Animal/fisiologia , Xenopus/fisiologia , Estimulação Acústica/métodos , Aminobenzoatos/farmacologia , Androgênios/administração & dosagem , Anestésicos/farmacologia , Animais , Percepção Auditiva/efeitos dos fármacos , Peso Corporal , Di-Hidrotestosterona/administração & dosagem , Sistema Endócrino/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Masculino , Ovariectomia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA