Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 16(2): 408-427, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793698

RESUMO

For hundreds of years, the color diversity of Mollusca shells has been a topic of interest for humanity. However, the genetic control underlying color expression is still poorly understood in mollusks. The pearl oyster Pinctada margaritifera is increasingly becoming a biological model to study this process due to its ability to produce a large range of colors. Previous breeding experiments demonstrated that color phenotypes were partly under genetic control, and while a few genes were found in comparative transcriptomics and epigenetic experiments, genetic variants associated with the phenotypes have not yet been investigated. Here, we used a pooled-sequencing approach on 172 individuals to investigate color-associated variants on three color phenotypes of economic interest for pearl farming, in three wild and one hatchery populations. While our results uncovered SNPs targeting pigment-related genes already identified in previous studies, such as PBGD, tyrosinases, GST, or FECH, we also identified new color-related genes occurring in the same pathways, like CYP4F8, CYP3A4, and CYP2R1. Moreover, we identified new genes involved in novel pathways unknown to be involved in shell coloration for P. margaritifera, like the carotenoid pathway, BCO1. These findings are essential to possibly implement future breeding programs focused on individual selection for specific color production in pearl oysters and improve the footprint of perliculture on the Polynesian lagoon by producing less but with a better quality.

2.
J Anim Ecol ; 91(6): 1196-1208, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35435257

RESUMO

Ocean warming challenges marine organisms' resilience, especially for species experiencing temperatures close to their upper thermal limits. A potential increase in thermal tolerance might significantly reduce the risk of population decline, which is intrinsically linked to variability in local habitat temperatures. Our goal was to assess the plastic and genetic potential of response to elevated temperatures in a tropical bivalve model, Pinctada margaritifera. We benefit from two ecotypes for which local environmental conditions are characterized by either large diurnal variations in the tide pools (Marquesas archipelago) or low mean temperature with stable to moderate seasonal variations (Gambier archipelago). We explored the physiological basis of individual responses to elevated temperature, genetic divergence as well as plasticity and acclimation by combining lipidomic and transcriptomic approaches. We show that P. margaritifera has certain capacities to adjust to long-term elevated temperatures that was thus far largely underestimated. Genetic variation across populations overlaps with gene expression and involves the mitochondrial respiration machinery, a central physiological process that contributes to species thermal sensitivity and their distribution ranges. Our results present evidence for acclimation potential in P. margaritifera and urge for longer term studies to assess populations resilience in the face of climate change.


Le réchauffement des océans remet en question la résilience des organismes marins, en particulier pour les espèces connaissant des températures proches de leurs limites thermiques supérieures. Une augmentation potentielle de la tolérance thermique pourrait ainsi réduire considérablement le risque de déclin de la population. L'objectif de cette étude était d'évaluer le potentiel plastique et génétique de la réponse à l'exposition courte et chronique à températures élevées chez une espèce de bivalve tropical, Pinctada margaritifera. Ce modèle bénéficie de l'existence de deux écotypes pour lesquels les conditions environnementales locales sont caractérisées soit par de fortes variations diurnes associées aux marées (archipel des Marquises) soit par une température moyenne plus basse et des variations saisonnières prononcées (archipel des Gambier). Nous avons exploré les bases physiologiques des réponses individuelles ainsi que la divergence génétique et quantifié la plasticité en combinant des approches lipidomique et transcriptomique. Nous montrons que P. margaritifera possède des capacités d'acclimatation à des températures élevées sur le long terme jusqu'à présent largement sous-estimées. La divergence génétique entre populations est par ailleurs associée à des différences d'expression des gènes et implique la machinerie respiratoire mitochondriale, un processus physiologique central qui contribue à la sensibilité thermique des espèces et à leurs répartitions. Nos résultats présentent les bases des potentiels d'acclimatation chez P. margaritifera et soulignent l'importance d'études à plus long terme pour évaluer la résilience des populations face au changement climatique.


Assuntos
Bivalves , Ácidos Graxos , Aclimatação/fisiologia , Animais , Bivalves/genética , Mudança Climática , Expressão Gênica , Variação Genética , Temperatura
3.
Front Genet ; 12: 630290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815466

RESUMO

Today, it is common knowledge that environmental factors can change the color of many animals. Studies have shown that the molecular mechanisms underlying such modifications could involve epigenetic factors. Since 2013, the pearl oyster Pinctada margaritifera var. cumingii has become a biological model for questions on color expression and variation in Mollusca. A previous study reported color plasticity in response to water depth variation, specifically a general darkening of the nacre color at greater depth. However, the molecular mechanisms behind this plasticity are still unknown. In this paper, we investigate the possible implication of epigenetic factors controlling shell color variation through a depth variation experiment associated with a DNA methylation study performed at the whole genome level with a constant genetic background. Our results revealed six genes presenting differentially methylated CpGs in response to the environmental change, among which four are linked to pigmentation processes or regulations (GART, ABCC1, MAPKAP1, and GRL101), especially those leading to darker phenotypes. Interestingly, the genes perlucin and MGAT1, both involved in the biomineralization process (deposition of aragonite and calcite crystals), also showed differential methylation, suggesting that a possible difference in the physical/spatial organization of the crystals could cause darkening (iridescence or transparency modification of the biomineral). These findings are of great interest for the pearl production industry, since wholly black pearls and their opposite, the palest pearls, command a higher value on several markets. They also open the route of epigenetic improvement as a new means for pearl production improvement.

4.
Genes (Basel) ; 12(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804186

RESUMO

The shell color of the Mollusca has attracted naturalists and collectors for hundreds of years, while the molecular pathways regulating pigment production and the pigments themselves remain poorly described. In this study, our aim was to identify the main pigments and their molecular pathways in the pearl oyster Pinctada margaritifera-the species displaying the broadest range of colors. Three inner shell colors were investigated-red, yellow, and green. To maximize phenotypic homogeneity, a controlled population approach combined with common garden conditioning was used. Comparative analysis of transcriptomes (RNA-seq) of P. margaritifera with different shell colors revealed the central role of the heme pathway, which is involved in the production of red (uroporphyrin and derivates), yellow (bilirubin), and green (biliverdin and cobalamin forms) pigments. In addition, the Raper-Mason, and purine metabolism pathways were shown to produce yellow pigments (pheomelanin and xanthine) and the black pigment eumelanin. The presence of these pigments in pigmented shell was validated by Raman spectroscopy. This method also highlighted that all the identified pathways and pigments are expressed ubiquitously and that the dominant color of the shell is due to the preferential expression of one pathway compared with another. These pathways could likely be extrapolated to many other organisms presenting broad chromatic variation.


Assuntos
Pigmentação/genética , Pinctada/genética , Animais , Bilirrubina/genética , Biliverdina/genética , Cor , Perfilação da Expressão Gênica/métodos , Heme/genética , Melaninas/genética , RNA-Seq/métodos , Transcriptoma/genética , Uroporfirinas/genética , Vitamina B 12/genética , Xantina/metabolismo
5.
BMC Genomics ; 21(1): 662, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32977773

RESUMO

BACKGROUND: Albino mutations are commonly observed in the animal kingdom, including in bivalves. In the black-lipped pearl oyster Pinctada margaritifera, albino specimens are characterized by total or partial absence of colouration resulting in typical white shell phenotype expression. The relationship of shell colour with resulting cultured pearl colour is of great economic interest in P. margaritifera, on which a pearl industry is based. Hence, the albino phenotype provides a useful way to examine the molecular mechanisms underlying pigmentation. RESULTS: Whole transcriptome RNA-sequencing analysis comparing albino and black wild-type phenotypes at three stages over the culture cycle of P. margaritifera revealed a total of 1606, 798 and 187 differentially expressed genes in whole juvenile, adult mantle and pearl sac tissue, respectively. These genes were found to be involved in five main molecular pathways, tightly linked to known pigmentation pathways: melanogenesis, calcium signalling pathway, Notch signalling pathway, pigment transport and biomineralization. Additionally, significant phenotype-associated SNPs were selected (N = 159), including two located in the Pif biomineralization gene, which codes for nacre formation. Interestingly, significantly different transcript splicing was detected between juvenile (N = 1366) and adult mantle tissue (N = 313) in, e.g., the tyrosinase Tyr-1 gene, which showed more complex regulation in mantle, and the Notch1 encoding gene, which was upregulated in albino juveniles. CONCLUSION: This multiple RNA-seq approach provided new knowledge about genes associated with the P. margaritifera albino phenotype, highlighting: 1) new molecular pathways, such as the Notch signalling pathway in pigmentation, 2) associated SNP markers with biomineraliszation gene of interest like Pif for marker-assisted selection and prevention of inbreeding, and 3) alternative gene splicing for melanin biosynthesis implicating tyrosinase.


Assuntos
Melaninas/genética , Ostreidae/genética , Pigmentação , Transcriptoma , Exoesqueleto/crescimento & desenvolvimento , Exoesqueleto/metabolismo , Animais , Sinalização do Cálcio , Melaninas/deficiência , Melaninas/metabolismo , Ostreidae/crescimento & desenvolvimento , Ostreidae/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA-Seq , Receptores Notch/genética , Receptores Notch/metabolismo
6.
Sci Rep ; 9(1): 11420, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388098

RESUMO

The French Polynesian islands are internationally known for their black pearls, produced by culture of the black lipped pearl oyster Pinctada margaritifera. The ongoing development of hatcheries for P. margaritifera in French Polynesia poses new challenges for the industry, particularly regarding the maintenance of genetic diversity in the hatchery stocks. This emphasizes the necessity to characterize the genetic diversity and differentiation within natural and exploited populations, to carefully select putative parental populations. The present study aimed at validating the phylogenetic status and investigating genetic attributes of populations from the only two non-exploited archipelagos of French Polynesia, the Marquesas archipelago, and the Australes archipelago, never analysed before. We found that individuals from both archipelagos belonged to P. margaritifera species. However, while the Australes population was genetically similar to non-exploited populations of the Tuamotu, the Marquesas populations were highly differentiated from the rest of the populations. This differentiation cannot not be only attributed to geographic distance and aquaculture status, but likely to hydrodynamic barriers allowing vicariant events to take place. Our results add up to other studies describing the Marquesas archipelago as a hotspot for biodiversity and differentiation, with some of the highest levels of endemism and vicariance found among marine species worldwide and provide precious information on available genetic resources for the implementation of P. margaritifera selective breeding and its genetic conservation in French Polynesia.


Assuntos
Aquicultura , Biodiversidade , Pinctada/genética , Isolamento Reprodutivo , Animais , Genótipo , Filogenia , Polinésia
7.
Front Microbiol ; 10: 1548, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333634

RESUMO

Elucidating the role of prokaryotic symbionts in mediating host physiology has emerged as an important area of research. Since oysters are the world's most heavily cultivated bivalve molluscs, numerous studies have applied molecular techniques to understand the taxonomic and functional diversity of their associated bacteria. Here, we expand on this research by assessing the composition and putative functional profiles of prokaryotic communities from different organs/compartments of the black-lipped pearl oyster Pinctada margaritifera, a commercially important shellfish valued for cultured pearl production in the Pacific region. Seven tissues, in addition to mucous secretions, were targeted from P. margaritifera individuals: the gill, gonad, byssus gland, haemolymph, mantle, adductor muscle, mucus, and gut. Richness of bacterial Operational Taxonomic Units (OTUs) and phylogenetic diversity differed between host tissues, with mucous layers displaying the highest richness and diversity. This multi-tissues approach permitted the identification of consistent microbial members, together constituting the core microbiome of P. margaritifera, including Alpha- and Gammaproteobacteria, Flavobacteriia, and Spirochaetes. We also found a high representation of Endozoicimonaceae symbionts, indicating that they may be of particular importance to oyster health, survival and homeostasis, as in many other coral reef animals. Our study demonstrates that the microbial communities and their associated predicted functional profiles are tissue specific. Inferred physiological functions were supported by current physiological data available for the associated bacterial taxa specific to each tissue. This work provides the first baseline of microbial community composition in P. margaritifera, providing a solid foundation for future research into this commercially important species and emphasises the important effects of tissue differentiation in structuring the oyster microbiome.

8.
Sci Rep ; 9(1): 7520, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101851

RESUMO

The bivalve Pinctada margaritifera has the capacity to produce the most varied and colourful pearls in the world. Colour expression in the inner shell is under combined genetic and environmental control and is correlated with the colour of pearls produced when the same individual is used as a graft donor. One major limitation when studying colour phenotypes is grader subjectivity, which leads to inconsistent colour qualification and quantification. Through the use of HSV (Hue Saturation Value) colour space, we created an R package named 'ImaginR' to characterise inner shell colour variations in P. margaritifera. Using a machine-learning protocol with a training dataset, ImaginR was able to reassign individual oysters and pearls to predefined human-based phenotype categories. We then tested the package on samples obtained in an experiment testing the effects of donor conditioning depth on the colour of the donor inner shell and colour of the pearls harvested from recipients following grafting and 20 months of culture in situ. These analyses successfully detected donor shell colour modifications due to depth-related plasticity and the maintenance of these modifications through to the harvested pearls. Besides its potential interest for standardization in the pearl industry, this new method is relevant to other research projects using biological models.


Assuntos
Exoesqueleto/fisiologia , Pigmentação/fisiologia , Pinctada/fisiologia , Exoesqueleto/transplante , Animais , Aquicultura , Cor , Aprendizado de Máquina , Fenômenos Ópticos , Fenótipo , Pigmentação/genética , Pinctada/genética , Polinésia , Software
9.
Sci Rep ; 9(1): 5114, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914709

RESUMO

Molluscs display a vast range of shell colours both between and within species. However, only a few species show colour variation in their soft tissues. In French Polynesia, the pearl oyster Pinctada margaritifera has three tissue morphotypes: the black wild-type and two rare mutations: white albino and orange mantle. Phenotypic transmission is known to occur from these phenotypes when they are used as graft donors for pearl production, leading to multicoloured and white pearls from black and albino mantle grafts, respectively. The present study furthers this knowledge by examining the phenotypic association between the orange mantle tissue morphotype and hard tissues: shells and cultured pearls. Based on a large experimental graft, shell colour quantification and pearl qualification showed that the orange morphotype is associated with light-coloured shells and pearls. Expression analysis of some candidate genes previously identified in the white mantle mutant, tested here on both graft and pearl sac tissues from orange mantle donors, confirmed the involvement of genes associated with shell matrix protein (shem4) and the melanin biosynthesis pathway (zinc). This study provides fundamental information on the mechanism behind mantle tissue colour in P. margaritifera and its association with biomineralisation and pigmentation processes that will be potentially valuable in future selection programs.


Assuntos
Exoesqueleto/metabolismo , Proteínas da Matriz Extracelular , Regulação da Expressão Gênica/fisiologia , Pigmentação/fisiologia , Pinctada , Animais , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/genética , Pinctada/genética , Pinctada/metabolismo
10.
J Exp Biol ; 221(Pt 18)2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30072384

RESUMO

The objective of this study was to observe the impact of temperature on pearl formation using an integrative approach describing the rotation of the pearls, the rate of nacre deposition, the thickness of the aragonite tablets and the biomineralizing potential of the pearl sac tissue though the expression level of some key genes. Fifty pearl oysters were grafted with magnetized nuclei to allow the rotation of the pearls to be described. Four months later, 32 of these pearl oysters were exposed to four temperatures (22, 26, 30 and 34°C) for 2 weeks. Results showed that the rotation speed differed according to the movement direction: pearls with axial movement had a significantly higher rotation speed than those with random movement. Pearl growth rate was influenced by temperature, with a maximum between 26 and 30°C but almost no growth at 34°C. Lastly, among the nine genes implicated in the biomineralization process, only Pmarg-Pif177 expression was significantly modified by temperature. These results showed that the rotation speed of the pearls was not linked to pearl growth or to the expression profiles of biomineralizing genes targeted in this study. On the basis of our results, we consider that pearl rotation is a more complex process than formerly thought. Mechanisms involved could include a strong environmental forcing in immediate proximity to the pearl. Another implication of our findings is that, in the context of ocean warming, pearl growth and quality can be expected to decrease in pearl oysters exposed to temperatures above 30°C.


Assuntos
Biomineralização , Nácar/fisiologia , Pinctada/fisiologia , Animais , Calcificação Fisiológica , Pinctada/genética , Rotação , Temperatura
11.
PLoS One ; 13(6): e0198505, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912963

RESUMO

Ageing is defined as the progressive decline in tissue and organ functions over time. This study aims to evaluate the ageing effect on cultured pearl quality phenotypes (including size and quality traits) in the graft-recipient animal model: Pinctada margaritifera. For this, eight uniform grafting experiments were designed using two hatchery-produced pearl oyster families as donors, which were followed through time, between 7 and 30 months in age. For each age category, 20 donors were studied for each culture site giving a total of 2400 grafted oysters. Several phenotypic measurements were made: 1) donor family growth performance from shell size records, 2) pearl size and corresponding quality traits, and 3) expression of some genes related to biomineralization processes on both the mantle graft and on pearl sac tissues. Results showed that: 1) donor age has an impact on pearl size, with grafts coming from the youngest donors yielding the biggest pearls; and 2) grafts from donors between 12 and 18 months in age produced pearls of the highest quality (grade and surface quality), a result supported by an analysis where the level of expression for a panel of genes associated with biomineralization was greatest in donors within the 12 to 18 months age group. These results indicate that donors aged between 12 and 18 months have high potential for biomineralisation and nacre deposition, and likely produce larger and higher quality cultured pearls than older donors.


Assuntos
Calcificação Fisiológica/fisiologia , Pinctada/fisiologia , Envelhecimento , Exoesqueleto/fisiologia , Animais , Expressão Gênica , Fenótipo , Pinctada/genética , Transplantes
12.
Sci Rep ; 8(1): 7520, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29760480

RESUMO

The pearl oyster is one of the rare animal models that support two distinct genomes, through the surgical graft process operated for culture pearl production. This grafted organism is assimilated to a chimera whose physiological functioning remains poorly known. The question of the energy expenditure comparison between chimera and non-chimera animals arises. To answer this question, grafted and non-grafted pearl oysters were evaluated for their energetic needs by the indirect calorimetry method. This method made it possible to measure the energy expenditure based on the respiration rate (RR) measurement, reflecting the basal metabolism. The results showed that the RR values for grafted and non-grafted pearl oysters were not significantly different (p < 0.05). The estimated cost of pearl calcification including CaCO3 and proteins synthesis was 0.237 ± 0.064 J h-1, representing 0.64% of the total energy expenditure of grafted pearl oysters. This study made it possible, for the first time, to see the energy cost of cultured pearl formation in P. margaritifera and the little impact in the energetic metabolism of the chimera organism.


Assuntos
Quimera/metabolismo , Nácar/metabolismo , Pinctada/genética , Animais , Aquicultura , Metabolismo Basal , Calcificação Fisiológica , Calorimetria , Metabolismo Energético , Pinctada/metabolismo , Transplante
13.
Mar Biotechnol (NY) ; 20(4): 490-501, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29663093

RESUMO

Nucleated pearls are produced by molluscs of the Pinctada genus through the biomineralisation activity of the pearl sac tissue within the recipient oyster. The pearl sac originates from graft tissue taken from the donor oyster mantle and its functioning is crucial in determining key factors that impact pearl quality surface characteristics. The specific role of related gene regulation during gem biogenesis was unknown, so we analysed the expression profiles of eight genes encoding nacreous (PIF, MSI60, PERL1) or prismatic (SHEM5, PRISM, ASP, SHEM9) shell matrix proteins or both (CALC1) in the pearl sac (N = 211) of Pinctada margaritifera during pearl biogenesis. The pearls and pearl sacs analysed were from a uniform experimental graft with sequential harvests at 3, 6 and 9 months post-grafting. Quality traits of the corresponding pearls were recorded: surface defects, surface deposits and overall quality grade. Results showed that (1) the first 3 months of culture seem crucial for pearl quality surface determination and (2) all the genes (SHEM5, PRISM, ASP, SHEM9) encoding proteins related to calcite layer formation were over-expressed in the pearl sacs that produced low pearl surface quality. Multivariate regression tree building clearly identified three genes implicated in pearl surface quality, SHEM9, ASP and PIF. SHEM9 and ASP were clearly implicated in low pearl quality, whereas PIF was implicated in high quality. Results could be used as biomarkers for genetic improvement of P. margaritifera pearl quality and constitute a novel perspective to understanding the molecular mechanism of pearl formation.


Assuntos
Nácar/biossíntese , Pinctada/genética , Exoesqueleto , Animais , Aquicultura/métodos , Biomarcadores , Perfilação da Expressão Gênica , Nácar/genética , Pinctada/metabolismo , Proteínas/genética , Transplante Heterólogo
14.
J Hered ; 109(5): 510-519, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29584922

RESUMO

Grafting mantle tissue of a donor pearl oyster into the gonad of a recipient oyster results in the formation of a chimera, the pearl sac. The phenotypic variations of this chimera are hypothesized to be the result of interactions between the donor and recipient genomes. In this study, the heritability of phenotypic variation and its association with gene expression were investigated for the first time during Pinctada margaritifera pearl production. Genetic variance was evaluated at different levels, 1) before the graft operation (expression in graft tissue), 2) after grafting (pearl sac tissue expression in chimera), and 3) on the product of the graft (pearl phenotype traits) based on controlled biparental crosses and the F1 generation. Donor-related genetic parameter estimates clearly demonstrate heritability for nacre weight and thickness, darkness and color, and surface defects and grade, which signifies a genetic basis in the donor oyster. In graft relative gene expression, the value of heritability was superior to 0.20 in for almost all genes; whereas in pearl sac, heritability estimates were low (h2 < 0.10; except for CALC1 and Aspein). Pearl sac expression seems to be more influenced by residual variance than the graft, which can be explained by environmental effects that influence pearls sac gene expression and act as a recipient additive genetic component. The interactions between donor and recipient are very complex, and further research is required to understand the role of the recipient oysters on pearl phenotypic and gene expression variances.


Assuntos
Quimera , Expressão Gênica , Ostreidae/genética , Fenótipo , Animais , Aquicultura , Feminino , Masculino
15.
Sci Rep ; 8(1): 2122, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391512

RESUMO

The bivalve Pinctada margaritifera exhibits three main transplant phenotypes derived from the donor (from which a mantle graft tissue, the saibo, is excised), the recipient (into which the saibo is implanted with a nucleus, leading to the formation of a pearl sac "chimera") and the cultured pearls themselves. This first phenome study on the species derived from a large experimental graft. Transplant phenotype was assessed at three scales: 1) macro, pearl size, colour, grade, 2) micro, pearl surface microstructure, and 3) molecular, biomineralisation gene expression level in saibo and pearl sac tissues. From donor to pearl, the phenome revealed fine variations of quality traits dependent on the position on the mantle where the saibo was cut, whose variation could overlap with inter-individual donor phenotype differences. A single donor phenotype could therefore produce multiple pearl phenotypes at the scale of the saibo position, mirroring its original activity at the mantle position level and the colour and shape of the shell. This phenome study provides essential information on phenotypic trait architecture enabling us to explore and explain the main biological functions and pave the way for a phenomic project on P. margaritifera that could benefit the pearl industry.


Assuntos
Exoesqueleto/ultraestrutura , Estruturas Animais/transplante , Marcadores Genéticos , Fenótipo , Pinctada/genética , Locos de Características Quantitativas , Animais , Biomineralização , Cor , Perfilação da Expressão Gênica , Modelos Animais , Pinctada/crescimento & desenvolvimento
16.
Sci Rep ; 7(1): 2696, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28578397

RESUMO

Grafting associates two distinct genotypes, each of which maintains its own genetic identity throughout the life of the grafted organism. Grafting technology is well documented in the plant kingdom, but much less so in animals. The pearl oyster, Pinctada margaritifera, produces valuable pearls as a result of the biomineralisation process of a mantle graft from a donor inserted together with a nucleus into the gonad of a recipient oyster. To explore the respective roles of donor and recipient in pearl formation, a uniform experimental graft was designed using donor and recipient oysters monitored for their growth traits. At the same time, phenotypic parameters corresponding to pearl size and quality traits were recorded. Phenotypic interaction analysis demonstrated: 1) a positive correlation between recipient shell biometric parameters and pearl size, 2) an individual donor effect on cultured pearl quality traits. Furthermore, the expressions of biomineralisation biomarkers encoding proteins in the aragonite or prismatic layer showed: 1) higher gene expression levels of aragonite-related genes in the large donor phenotype in the graft tissue, and 2) correlation of gene expression in the pearl sac tissue with pearl quality traits and recipient biometric parameters. These results emphasize that pearl size is mainly driven by the recipient and that pearl quality traits are mainly driven by the donor.


Assuntos
Calcificação Fisiológica/genética , Expressão Gênica , Fenótipo , Pinctada/fisiologia , Característica Quantitativa Herdável , Animais
17.
Anim Genet ; 47(5): 610-4, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27435366

RESUMO

Pinctada margaritifera is French Polynesia's most economically important aquaculture species. This pearl oyster has the specific ability to produce cultured pearls with a very wide range of colours, depending on the colour phenotypes of donor oysters used. Its aquaculture is still based on natural spat collection from wild stocks. We investigated three rare colour variants of P. margaritifera - orange flesh, and red and white shell colour phenotypes - in comparison with the wild-type black flesh and shell commonly found in this species. The study aimed to assess the geographic distribution and genetic basis of these colour variants. Colour frequencies were evaluated during transfer and graft processes of pearl oyster seed captured at collector stations. Among the collection locations studied, Mangareva Island showed the highest rate of the orange flesh phenotype, whereas Takaroa and Takume atolls had relatively high rates of red and white shell phenotypes respectively. Broodstocks were made of these rare colour variants, and crosses were performed to produce first- and second-generation progenies to investigate segregation. The results were consistent with Mendelian ratios and suggest a distinct model with no co-dominance: (i) a two-allele model for flesh trait, whereby the orange allele is recessive to the black fleshed type, and (ii) a three-allele model for shell trait, whereby the black wild-type allele is dominant to the red coloration, which is dominant to the white shell. Furthermore, the proposed model provides the basis for producing selected donor pearl oyster lines through hatchery propagation.


Assuntos
Exoesqueleto , Padrões de Herança , Pigmentação/genética , Pinctada/genética , Alelos , Animais , Aquicultura , Cor , Genes Dominantes , Genes Recessivos , Genótipo , Modelos Genéticos , Fenótipo , Polinésia
18.
BMC Pulm Med ; 15: 44, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25927404

RESUMO

BACKGROUND: COPD is largely under-diagnosed and once diagnosed usually at a late stage. Early diagnosis is thoroughly recommended but most attempts failed as the disease is marginally known and screening marginally accepted. It is a rare cause of concern in primary care and spirometry is not very common. Exhaled carbon monoxide (eCO) is a 5-seconds easy-to-use device dedicated to monitor cigarette smoke consumption. We aimed to assess whether systematic eCO measurement in primary care is a useful tool to improve acceptance for early COPD diagnosis. METHODS: This was a two-center randomized controlled trial enrolling 410 patients between March and May, 2013. Whatever was the reason of attendance to the clinic, all adults were proposed to measure eCO during randomly chosen days and outcomes were compared between the two different groups of patients (performing and not performing eCO). Primary outcome was the rates of acceptance for COPD screening. RESULTS: Rate of acceptance for COPD screening was 28% in the eCO group and 26% in the other (P = 0.575). These rates increased to 48 and 51% in smokers (current and former). eCO significantly increased the rate of clinics during which a debate on smoking was initiated (42 vs. 24%, P = 0.001). eCO at 2.5 ppm was the discriminative concentration for identifying active smokers (ROC curve AUC: 0.935). Smoking was the only independent risk factor associated with acceptance for early COPD screening (OR = 364.6 (82.5-901.5) and OR = 78.5 (18.7-330.0) in current and former smokers, respectively) while eCO measurement was not. CONCLUSIONS: Early COPD diagnosis is a minor cause of concern in primary care. Systematic eCO assessment failed to improve acceptance for early COPD screening.


Assuntos
Monóxido de Carbono/análise , Aceitação pelo Paciente de Cuidados de Saúde , Atenção Primária à Saúde , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Fumar , Adulto , Idoso , Área Sob a Curva , Testes Respiratórios , Diagnóstico Precoce , Feminino , Humanos , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Curva ROC
19.
PLoS One ; 9(8): e103944, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25121605

RESUMO

In this study, we analyzed the combined effect of microalgal concentration and temperature on the shell growth of the bivalve Pinctada margaritifera and the molecular mechanisms underlying this biomineralization process. Shell growth was measured after two months of rearing in experimental conditions, using calcein staining of the calcified structures. Molecular mechanisms were studied though the expression of 11 genes encoding proteins implicated in the biomineralization process, which was assessed in the mantle. We showed that shell growth is influenced by both microalgal concentration and temperature, and that these environmental factors also regulate the expression of most of the genes studied. Gene expression measurement of shell matrix protein thereby appears to be an appropriate indicator for the evaluation of the biomineralization activity in the pearl oyster P. margaritifera under varying environmental conditions. This study provides valuable information on the molecular mechanisms of mollusk shell growth and its environmental control.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Exoesqueleto/fisiologia , Expressão Gênica/genética , Pinctada/crescimento & desenvolvimento , Pinctada/genética , Proteínas/genética , Animais , Alimentos , Nácar/genética , Nácar/fisiologia , Fenômenos Fisiológicos/genética , Fenômenos Fisiológicos/fisiologia , Pinctada/fisiologia , Temperatura
20.
Genetics ; 186(1): 395-404, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20592258

RESUMO

Using advanced intermated populations has been proposed as a way to increase the accuracy of mapping experiments. An F(3) population of 300 lines and an advanced intermated F(3) population of 322 lines, both derived from the same parental maize inbred lines, were jointly evaluated for dry grain yield (DGY), grain moisture (GM), and silking date (SD). Genetic variance for dry grain yield was significantly lower in the intermated population compared to the F(3) population. The confidence interval around a QTL was on average 2.31 times smaller in the intermated population compared to the F(3) population. One controversy surrounding QTL mapping is whether QTL identified in fact represent single loci. This study identifies two distinct loci for dry grain yield in the intermated population in coupling phase, while the F(3) identifies only a single locus. Surprisingly, fewer QTL were detected in the intermated population than the F(3) (21 vs. 30) and <50% of the detected QTL were shared among the two populations. Cross-validation showed that selection bias was more important in the intermated population than in the F(3) and that each detected QTL explained a lower percentage of the variance. This finding supports the hypothesis that QTL detected in conventional populations correspond mainly to clusters of linked QTL. The actual number of QTL involved in the genetic architecture of complex traits may be substantially larger, with effect sizes substantially smaller than in conventional populations.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Grão Comestível/genética , Hibridização Genética/genética , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Mapeamento Cromossômico , Grão Comestível/metabolismo , Genótipo , Fenótipo , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes , Água/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA