Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3760, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768468

RESUMO

The KCNQ1 ion channel plays critical physiological roles in electrical excitability and K+ recycling in organs including the heart, brain, and gut. Loss of function is relatively common and can cause sudden arrhythmic death, sudden infant death, epilepsy and deafness. Here, we report cryogenic electron microscopic (cryo-EM) structures of Xenopus KCNQ1 bound to Ca2+/Calmodulin, with and without the KCNQ1 channel activator, ML277. A single binding site for ML277 was identified, localized to a pocket lined by the S4-S5 linker, S5 and S6 helices of two separate subunits. Several pocket residues are not conserved in other KCNQ isoforms, explaining specificity. MD simulations and point mutations support this binding location for ML277 in open and closed channels and reveal that prevention of inactivation is an important component of the activator effect. Our work provides direction for therapeutic intervention targeting KCNQ1 loss of function pathologies including long QT interval syndrome and seizures.


Assuntos
Canal de Potássio KCNQ1 , Síndrome do QT Longo , Piperidinas , Tiazóis , Compostos de Tosil , Animais , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Mutação , Piperidinas/farmacologia , Tiazóis/farmacologia , Compostos de Tosil/farmacologia , Xenopus
2.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 9): 303-311, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473107

RESUMO

The crystal structures of free T-state and R-state glycogen phosphorylase (GP) and of R-state GP in complex with the allosteric activators IMP and AMP are reported at improved resolution. GP is a validated pharmaceutical target for the development of antihyperglycaemic agents, and the reported structures may have a significant impact on structure-based drug-design efforts. Comparisons with previously reported structures at lower resolution reveal the detailed conformation of important structural features in the allosteric transition of GP from the T-state to the R-state. The conformation of the N-terminal segment (residues 7-17), the position of which was not located in previous T-state structures, was revealed to form an α-helix (now termed α0). The conformation of this segment (which contains Ser14, phosphorylation of which leads to the activation of GP) is significantly different between the T-state and the R-state, pointing in opposite directions. In the T-state it is packed between helices α4 and α16 (residues 104-115 and 497-508, respectively), while in the R-state it is packed against helix α1 (residues 22'-38') and towards the loop connecting helices α4' and α5' of the neighbouring subunit. The allosteric binding site where AMP and IMP bind is formed by the ordering of a loop (residues 313-326) which is disordered in the free structure, and adopts a conformation dictated mainly by the type of nucleotide that binds at this site.


Assuntos
Monofosfato de Adenosina , Glicogênio Fosforilase , Músculos , Animais , Coelhos , Monofosfato de Adenosina/metabolismo , Regulação Alostérica , Cristalografia por Raios X , Glicogênio Fosforilase/química , Glicogênio Fosforilase/metabolismo , Modelos Moleculares , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculos/enzimologia , Conformação Proteica , Especificidade por Substrato
3.
Phytochemistry ; 186: 112707, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33721796

RESUMO

The glycogen synthase kinases 3 family (GSK3s/SKs; serine/threonine protein kinases) is conserved throughout eukaryotic evolution from yeast to plants and mammals. We studied a plant SK kinase from Lotus japonicus (LjSK1), previously implicated in nodule development, by enzyme kinetics and mutagenesis studies to compare it to mammalian homologues. Using a phosphorylated peptide as substrate, LjSK1 displays optimum kinase activity at pH 8.0 and 20 °C following Michaelis-Menten kinetics with Km and Vmax values of 48.2 µM and 111.6 nmol/min/mg, respectively, for ATP. Mutation of critical residues, as inferred by sequence comparison to the human homologue GSK3ß and molecular modeling, showed a conserved role for Lys167, while residues conferring substrate specificity in the human enzyme are not as significant in modulating LjSK1 substrate specificity. Mutagenesis studies also indicate a regulation mechanism for LjSK1 via proteolysis since removal of a 98 residue long N-terminal segment increases its catalytic efficiency by almost two-fold. In addition, we evaluated the alteration of LjSK1 kinase activity in planta, by overexpressing the mutant variants in hairy-roots and a phenotype in nodulation and lateral root development was verified.


Assuntos
Lotus , Glicogênio Sintase Quinase 3 beta , Lotus/genética , Mutagênese , Fosforilação , Proteínas de Plantas/metabolismo
4.
Bioorg Chem ; 102: 104003, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32771768

RESUMO

Glycogen phosphorylase (GP) is an important target for the development of new anti-hyperglycaemic agents. Flavonoids are novel inhibitors of GP, but their mode of action is unspecific in terms of the GP binding sites involved. Towards design of synthetic flavonoid analogues acting specifically at the inhibitor site and to exploit the site's hydrophobic pocket, chrysin has been employed as a lead compound for the in silico screening of 1169 new analogues with different B ring substitutions. QM/MM-PBSA binding free energy calculations guided the final selection of eight compounds, subsequently synthesised using a Baker-Venkataraman rearrangement-cyclisation approach. Kinetics experiments against rabbit muscle GPa and GPb together with human liver GPa, revealed three of these compounds (11, 20 and 43) among the most potent that bind at the site (Ki s < 4 µM for all three isoforms), and more potent than previously reported natural flavonoid inhibitors. Multiple inhibition studies revealed binding exclusively at the inhibitor site. The binding is synergistic with glucose suggesting that inhibition could be regulated by blood glucose levels and would decrease as normoglycaemia is achieved. Compound 43 was an effective inhibitor of glycogenolysis in hepatocytes (IC50 = 70 µM), further promoting these compounds for optimization of their drug-like potential. X-ray crystallography studies revealed the B-ring interactions responsible for the observed potencies.


Assuntos
Cristalografia por Raios X/métodos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Flavonoides/uso terapêutico , Glicogênio Fosforilase/antagonistas & inibidores , Hiperglicemia/tratamento farmacológico , Animais , Produtos Biológicos , Humanos , Modelos Moleculares , Coelhos , Relação Estrutura-Atividade
5.
Bioorg Med Chem ; 28(1): 115196, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767404

RESUMO

C-Glucopyranosyl imidazoles, thiazoles, and an N-glucopyranosyl tetrazole were assessed in vitro and ex vivo for their inhibitory efficiency against isoforms of glycogen phosphorylase (GP; a validated pharmacological target for the development of anti-hyperglycaemic agents). Imidazoles proved to be more potent inhibitors than the corresponding thiazoles or the tetrazole. The most potent derivative has a 2-naphthyl substituent, a Ki value of 3.2 µM for hepatic glycogen phosphorylase, displaying also 60% inhibition of GP activity in HepG2 cells, compared to control vehicle treated cells, at 100 µM. X-Ray crystallography studies of the protein - inhibitor complexes revealed the importance of the architecture of inhibitor associated hydrogen bonds or sulfur σ-hole bond interactions to Asn284 OD1, offering new insights to structure-based design efforts. Moreover, while the 2-glucopyranosyl-tetrazole seems to bind differently from the corresponding 1,2,3-triazole compound, the two inhibitors are equipotent.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase Hepática/antagonistas & inibidores , Imidazóis/farmacologia , Tetrazóis/farmacologia , Tiazóis/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicogênio Fosforilase Hepática/metabolismo , Células Hep G2 , Humanos , Hidrogênio/química , Imidazóis/síntese química , Imidazóis/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Enxofre/química , Tetrazóis/síntese química , Tetrazóis/química , Tiazóis/síntese química , Tiazóis/química
6.
J Med Chem ; 62(13): 6116-6136, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31251604

RESUMO

Epimeric series of aryl-substituted glucopyranosylidene-spiro-imidazolinones, an unprecedented new ring system, were synthesized from the corresponding Schiff bases of O-perbenzoylated (gluculopyranosylamine)onamides by intramolecular ring closure of the aldimine moieties with the carboxamide group elicited by N-bromosuccinimide in pyridine. Test compounds were obtained by Zemplén O-debenzoylation. Stereochemistry and ring tautomers of the new compounds were investigated by NMR, time-dependent density functional theory (TDDFT)-electronic circular dichroism, and DFT-NMR methods. Kinetic studies with rabbit muscle and human liver glycogen phosphorylases showed that the (R)-imidazolinones were 14-216 times more potent than the (S) epimers. The 2-naphthyl-substituted (R)-imidazolinone was the best inhibitor of the human enzyme (Ki 1.7 µM) and also acted on HepG2 cells (IC50 177 µM). X-ray crystallography revealed that only the (R) epimers bound in the crystal. Their inhibitory efficacy is based on the hydrogen-bonding interactions of the carbonyl oxygen and the NH of the imidazolinone ring.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucosídeos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Imidazolinas/farmacologia , Compostos de Espiro/farmacologia , Animais , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Glucosídeos/síntese química , Glucosídeos/metabolismo , Glicogênio Fosforilase/química , Glicogênio Fosforilase/metabolismo , Células Hep G2 , Humanos , Ligação de Hidrogênio , Imidazolinas/síntese química , Imidazolinas/metabolismo , Cinética , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Coelhos , Compostos de Espiro/síntese química , Compostos de Espiro/metabolismo , Estereoisomerismo
7.
Molecules ; 24(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987252

RESUMO

Structure-based design and synthesis of two biphenyl-N-acyl-ß-d-glucopyranosylamine derivatives as well as their assessment as inhibitors of human liver glycogen phosphorylase (hlGPa, a pharmaceutical target for type 2 diabetes) is presented. X-ray crystallography revealed the importance of structural water molecules and that the inhibitory efficacy correlates with the degree of disturbance caused by the inhibitor binding to a loop crucial for the catalytic mechanism. The in silico-derived models of the binding mode generated during the design process corresponded very well with the crystallographic data.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Glucosamina/análogos & derivados , Glicogênio Fosforilase/química , Relação Quantitativa Estrutura-Atividade , Sítios de Ligação , Domínio Catalítico , Técnicas de Química Sintética , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Glucosamina/síntese química , Glucosamina/química , Glucosamina/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica
8.
Eur J Med Chem ; 147: 266-278, 2018 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-29453094

RESUMO

3-(ß-d-Glucopyranosyl)-5-substituted-1,2,4-triazoles have been revealed as an effective scaffold for the development of potent glycogen phosphorylase (GP) inhibitors but with the potency very sensitive to the nature of the alkyl/aryl 5-substituent (Kun et al., Eur. J. Med. Chem. 2014, 76, 567). For a training set of these ligands, quantum mechanics-polarized ligand docking (QM-PLD) demonstrated good potential to identify larger differences in potencies (predictive index PI = 0.82) and potent inhibitors with Ki's < 10 µM (AU-ROC = 0.86). Accordingly, in silico screening of 2335 new analogues exploiting the ZINC docking database was performed and nine predicted candidates selected for synthesis. The compounds were prepared in O-perbenzoylated forms by either ring transformation of 5-ß-d-glucopyranosyl tetrazole by N-benzyl-arenecarboximidoyl chlorides, ring closure of C-(ß-d-glucopyranosyl)formamidrazone with aroyl chlorides, or that of N-(ß-d-glucopyranosylcarbonyl)arenethiocarboxamides by hydrazine, followed by deprotections. Kinetics experiments against rabbit muscle GPb (rmGPb) and human liver GPa (hlGPa) revealed five compounds as potent low µM inhibitors with three of these on the submicromolar range for rmGPa. X-ray crystallographic analysis sourced the potency to a combination of favorable interactions from the 1,2,4-triazole and suitable aryl substituents in the GP catalytic site. The compounds also revealed promising calculated pharmacokinetic profiles.


Assuntos
Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Teoria Quântica , Triazóis/farmacologia , Células CACO-2 , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicogênio Fosforilase/metabolismo , Humanos , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
9.
Bioorg Chem ; 77: 485-493, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29454281

RESUMO

Human liver glycogen phosphorylase (hlGP), a key enzyme in glycogen metabolism, is a valid pharmaceutical target for the development of new anti-hyperglycaemic agents for type 2 diabetes. Inhibitor discovery studies have focused on the active site and in particular on glucopyranose based compounds with a ß-1 substituent long enough to exploit interactions with a cavity adjacent to the active site, termed the ß-pocket. Recently, C-ß-d-glucopyranosyl imidazoles and 1, 2, 4-triazoles proved to be the best known glucose derived inhibitors of hlGP. Here we probe the ß-pocket by studying the inhibitory effect of six different groups at the para position of 3-(ß-d-glucopyranosyl phenyl)-5-phenyl-, 1, 2, 4-triazoles in hlGP by kinetics and X-ray crystallography. The most bioactive compound was the one with an amine substituent to show a Ki value of 0.43 µM. Structural studies have revealed the physicochemical diversity of the ß-pocket providing information for future rational inhibitor design studies.


Assuntos
Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Fígado/enzimologia , Triazóis/farmacologia , Animais , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicogênio Fosforilase/isolamento & purificação , Glicogênio Fosforilase/metabolismo , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Coelhos , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
10.
Curr Drug Discov Technol ; 15(1): 41-53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28625148

RESUMO

BACKGROUND: Glycogen phosphorylase (GP) is a pharmaceutical target for the discovery of new antihyperglycaemic agents. Punica granatum is a well-known plant for its potent antioxidant and antimicrobial activities but so far has not been examined for antihyperglycaemic activity. OBJECTIVE: The aim was to examine the inhibitory potency of eighteen polyphenolic extracts obtained from Punica granatum fruits and industrial juicing byproducts against GP and discover their most bioactive ingredients. METHOD: Kinetic experiments were conducted to measure the IC50 values of the extracts while affinity crystallography was used to identify the most bioactive ingredient. The inhibitory effect of one of the polyphenolic extracts was also verified ex vivo, in HepG2 cells. RESULTS: All extracts exhibited significant in vitro inhibitory potency (IC50 values in the range of low µg/mL). Affinity crystallography revealed that the most bioactive ingredients of the extracts were chlorogenic and ellagic acids, found bound in the active and the inhibitor site of GP, respectively.While ellagic acid is an established GP inhibitor, the inhibition of chlorogenic acid is reported for the first time. Kinetic analysis indicated that chlorogenic acid is an inhibitor with Ki=2.5 x 10-3Mthat acts synergistically with ellagic acid. CONCLUSION: Our study provides the first evidence for a potential antidiabetic usage of Punica granatum extracts as antidiabetic food supplements. Although, more in vivo studies have to be performed before these extracts reach the stage of antidiabetic food supplements, our study provides a first positive step towards this process.


Assuntos
Sucos de Frutas e Vegetais , Glicogênio Fosforilase/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Lythraceae , Extratos Vegetais/farmacologia , Cristalografia , Frutas , Glicogênio Fosforilase/química , Glicogênio Fosforilase/metabolismo , Células Hep G2 , Humanos , Extratos Vegetais/química
11.
J Med Chem ; 60(22): 9251-9262, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-28925695

RESUMO

Aryl substituted 1-(ß-d-glucosaminyl)-1,2,3-triazoles as well as C-ß-d-glucosaminyl 1,2,4-triazoles and imidazoles were synthesized and tested as inhibitors against muscle and liver isoforms of glycogen phosphorylase (GP). While the N-ß-d-glucosaminyl 1,2,3-triazoles showed weak or no inhibition, the C-ß-d-glucosaminyl derivatives had potent activity, and the best inhibitor was the 2-(ß-d-glucosaminyl)-4(5)-(2-naphthyl)-imidazole with a Ki value of 143 nM against human liver GPa. An X-ray crystallography study of the rabbit muscle GPb inhibitor complexes revealed structural features of the strong binding and offered an explanation for the differences in inhibitory potency between glucosyl and glucosaminyl derivatives and also for the differences between imidazole and 1,2,4-triazole analogues.


Assuntos
Glucosamina/análogos & derivados , Glicogênio Fosforilase/antagonistas & inibidores , Imidazóis/farmacologia , Triazóis/farmacologia , Animais , Cristalografia por Raios X , Glucosamina/síntese química , Glucosamina/farmacologia , Humanos , Ligação de Hidrogênio , Imidazóis/síntese química , Cinética , Fígado/enzimologia , Músculo Esquelético/enzimologia , Domínios Proteicos , Coelhos , Relação Estrutura-Atividade , Triazóis/síntese química
12.
J Struct Biol ; 199(1): 57-67, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28483603

RESUMO

3-(C-Glucopyranosyl)-5aryl-1,2,4-triazoles with an aryl moiety larger than phenyl have been shown to have strong inhibitory potency (Ki values in the range of upper nM) for human liver glycogen phosphorylase (hlGP), a pharmacologically relevant target for diabetes type 2. In this study we investigate in a comparative manner the inhibitory effect of the above triazoles and their respective imidazoles on hlGPa. Kinetic studies show that the imidazole derivatives are 6-8 times more potent than their corresponding triazoles. We also seek to answer how the type of the aryl moiety affects the potency in hlGPa, and by determination of the crystal structure of rmGPb in complex with the triazole derivatives the structural basis of their inhibitory efficacy is also elucidated. Our studies revealed that the van der Waals interactions between the aryl moiety and residues in a hydrophobic pocket within the active site are mainly responsible for the variations in the potency of these inhibitors.


Assuntos
Glicogênio Fosforilase/antagonistas & inibidores , Triazóis/farmacologia , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/farmacologia , Cinética , Fígado/enzimologia
13.
Curr Med Chem ; 24(4): 384-403, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27855623

RESUMO

Glycogen phosphorylase (GP) is a validated pharmaceutical target for the development of antihyperglycaemic agents. Phytogenic polyphenols, mainly flavonoids and pentacyclic triterpenes, have been found to be potent inhibitors of GP. These compounds have both pharmaceutical and nutraceutical potential for glycemic control in diabetes type 2. This review focuses mainly on the most successful (potent) of these compounds discovered to date. The protein-ligand interactions that form the structural basis of their potencies are discussed, highlighting the potential for exploitation of their scaffolds in the future design of new GP inhibitors.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Polifenóis/farmacologia , Triterpenos/farmacologia , Animais , Diabetes Mellitus Tipo 2/sangue , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Glicogênio Fosforilase/química , Glicogênio Fosforilase/metabolismo , Humanos , Polifenóis/metabolismo , Polifenóis/uso terapêutico , Triterpenos/metabolismo , Triterpenos/uso terapêutico
14.
FEBS Lett ; 589(15): 1787-94, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25980608

RESUMO

We present a study on the binding of gallic acid and its dimer ellagic acid to glycogen phosphorylase (GP). Ellagic acid is a potent inhibitor with Kis of 13.4 and 7.5 µM, in contrast to gallic acid which displays Kis of 1.7 and 3.9 mM for GPb and GPa, respectively. Both compounds are competitive inhibitors with respect to the substrate, glucose-1-phoshate, and non-competitive to the allosteric activator, AMP. However, only ellagic acid functions with glucose in a strongly synergistic mode. The crystal structures of the GPb-gallic acid and GPb-ellagic acid complexes were determined at high resolution, revealing that both ligands bind to the inhibitor binding site of the enzyme and highlight the structural basis for the significant difference in their inhibitory potency.


Assuntos
Ácido Elágico/farmacologia , Flavonoides/farmacologia , Ácido Gálico/farmacologia , Glicogênio Fosforilase Muscular/metabolismo , Glicogênio Fosforilase/metabolismo , Hipoglicemiantes/farmacologia , Animais , Ácido Elágico/química , Ácido Elágico/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Ácido Gálico/química , Ácido Gálico/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Estrutura Molecular , Músculo Esquelético/enzimologia , Coelhos
15.
Food Chem Toxicol ; 67: 35-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24556570

RESUMO

The inhibitory potency of thirteen polyphenolic extracts obtained from vinification byproducts of Greek varieties of Vitis vinifera against glycogen phosphorylase (GP) has been studied by kinetic experiments. GP is an enzyme involved in glucose homeostasis and a molecular target for the discovery of new hypoglycemic agents. Studies have shown that all extracts display significant inhibitory potency for GP in vitro with IC50 values in the range of low µg/mL. X-ray crystallographic analysis of GP crystals soaked with two of these extracts revealed that the most active ingredient is quercetin which binds at novel binding site, distinct from the other known sites of the enzyme. One of the most potent of the studied extracts had also a moderate effect on glycogenolysis in the cellular lever with an IC50 value of 17.35 µg/mL. These results highlight the importance of natural resources in the quest for the discovery of new hypoglycemic agents, while at the same time they can serve as the starting point for their exploitation for antidiabetic usage and the development of novel biofunctional foods.


Assuntos
Glicogênio Fosforilase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Vitis/química , Modelos Moleculares , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA