Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Chemosphere ; 362: 142619, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880257

RESUMO

The present study aims to compare and assess the toxicity induced by aged (irradiated with ultraviolet radiation for 120 days) polyethylene microplastics (PE-MPs) in comparison to virgin (non-irradiated) ones, after feeding the freshwater fish Perca fluviatilis. To this end, MPs mediated genotoxicity was assessed by the investigation of micronucleus nuclear abnormalities frequency in fish blood, and the degree of DNA damage in the liver and muscle tissues, while metabolic alterations were also recorded in both tissues. Results showed that both virgin and aged PE-MPs induced signaling pathways leading to DNA damage and nuclear abnormalities, as well as metabolites changes in all tissues studied. Metabolic changes revealed that the metabolism of nucleic acids, energy, amino acids, and neurotransmitters was more disrupted in the liver and by aged PE-MPs compared to muscles. Fish fed with aged PE-MPs exhibited greater DNA damage, while blood cells of fish fed with virgin PE-MPs seemed to be more vulnerable to nuclear abnormalities in relation to those fed with aged PE-MPs. Moreover, aged PE-MPs induced more acute overall effects on the metabolic profiles of fish tissues, and initiated stronger stress responses, inflammation, and cellular damages in fish tissues in relation to virgin ones. Characterization of both virgin and aged MPs revealed that the latter exhibited lower crystallinity and melting point, more irregular shapes and higher moiety of oxygen and carbonyl groups, which could be attributed for their observed higher toxicity. The research outcomes provide significant insights for advancing toxicological investigations in this field.

2.
Environ Sci Pollut Res Int ; 31(25): 37824-37834, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38787473

RESUMO

This theoretical investigation delves into the analysis of Reactive red 2 (RR-2) adsorption isotherms on metal hydroxide employing a sophisticated double-layer model characterized by dual-energy levels within the realm of physical adsorption phenomena. An examination of five distinct statistical physics frameworks was undertaken to elucidate the modeling and interpretation of equilibrium data. Expression for the physico-chemical parameters involved in the adsorption phenomena was derived based on statistical physics treatment. Fitting experimental adsorption isotherms (308-333 K) to a DAMTBS has revealed the number of anchored molecules per site, occupied receptor site density, and the number of adsorbed layers. The steric parameter n varies between 0.92 and 1.05. More importantly, it is evidenced that the adhesion mechanism of (RR-2) onto metal hydroxide as determined by the estimated adsorption energies (< 40 kJ/mol) supports a spontaneous and exothermic physisorption process. Thermodynamic potential functions such as entropy, Gibbs free energy, and internal energy have been computed based on the most suitable model. This research advances our physical understanding of how metal hydroxide captures dye molecules RR-2 through adsorption reaction for water depollution treatment.


Assuntos
Hidróxidos , Esgotos , Adsorção , Hidróxidos/química , Esgotos/química , Termodinâmica , Naftalenossulfonatos/química
3.
Pharmaceuticals (Basel) ; 17(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794197

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely utilized pharmaceuticals worldwide. Besides their recognized anti-inflammatory effects, these drugs exhibit various other pleiotropic effects in several cells, including platelets. Within this article, the multifaceted properties of NSAIDs on platelet functions, activation and viability, as well as their interaction(s) with established antiplatelet medications, by hindering several platelet agonists' pathways and receptors, are thoroughly reviewed. The efficacy and safety of NSAIDs as adjunctive therapies for conditions involving inflammation and platelet activation are also discussed. Emphasis is given to the antiplatelet potential of commonly administered NSAIDs medications, such as ibuprofen, diclofenac, naproxen and ketoprofen, alongside non-opioid analgesic and antipyretic medications like paracetamol. This article delves into their mechanisms of action against different pathways of platelet activation, aggregation and overall platelet functions, highlighting additional health-promoting properties of these anti-inflammatory and analgesic agents, without neglecting the induced by these drugs' side-effects on platelets' functionality and thrombocytopenia. Environmental issues emerging from the ever-increased subscription of these drugs are also discussed, along with the need for novel water treatment methodologies for their appropriate elimination from water and wastewater samples. Despite being efficiently eliminated during wastewater treatment processes on occasion, NSAIDs remain prevalent and are found at significant concentrations in water bodies that receive effluents from wastewater treatment plants (WWTPs), since there is no one-size-fits-all solution for removing all contaminants from wastewater, depending on the specific characteristics of the wastewater. Several novel methods have been studied, with adsorption being proposed as a cost-effective and environmentally friendly method for wastewater purification from such drugs. This article also presents limitations and future prospects regarding the observed antiplatelet effects of NSAIDs, as well as the potential of novel derivatives of these compounds, with benefits in other important platelet functions.

4.
J Colloid Interface Sci ; 669: 327-335, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38718586

RESUMO

Nanobubbles (NBs) are classified in two distinct categories: surface and bulk. Surface NBs are readily observed using atomic force microscopy (AFM), while the existence of bulk NBs has been a subject of debate, conflicting with the diffusion theory's predictions. Current methodologies for identifying bulk NBs yield inconclusive results. In this study, Langmuir Blodgett (LB) technique and AFM, are utilized to visualize NB imprints on anionic, cationic and zwitterionic lipid films deposited on glass-slide substrates. Our analysis of Langmuir monolayers compression isotherms reveals the impact of bulk NBs on lipid monolayer development. AFM scans of the deposited lipid films consistently show NB imprints. Notably, cationic and zwitterionic film depositions exhibit NB formations from the 1st layer, whereas in anionic films, these formations are observed only after the 3rd layer. These results suggest that the origin of these imprinted formations may be attributed to bulk NBs.

5.
Sci Total Environ ; 931: 172718, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677438

RESUMO

Wastewater treatment plants (WWTP) are facilities where municipal wastewater undergoes treatment so that its organic load and its pathogenic potential are minimized. Sewage sludge is a by-product of this process and when properly treated is preferentially called "biosolids". These treatments may include some or most of the following: thickening, dewatering, drying, digestion, composting, liming. Nowadays it is almost impossible to landfill biosolids, which however can well be used as crop fertilizers. Continuous or superfluous biosolids fertilization may negatively affect non-target organisms such as soil macro-organisms or even plants. These effects can be depicted through bioassays on terrestrial animals and plants. It has been shown that earthworms have been affected to various degrees on the following endpoints: pollutants' bioaccumulation, viability, reproduction, avoidance behavior, burrowing behavior. Collembola have been affected on viability, reproduction, avoidance behavior. Other terrestrial organisms such as nematodes and diplopods have also shown adverse health effects. Phytotoxicity have been caused by some biosolids regimes as measured through the following endpoints: seed germination, root length, shoot length, shoot biomass, root biomass, chlorophyll content, antioxidant enzyme activity. Very limited statistical correlations between pollutant concentrations and toxicity endpoints have been established such as between juvenile mortality (earthworms) and As or Ba concentration in the biosolids, between juvenile mortality (collembola) and Cd or S concentration in the biosolids, or between phytotoxicity and some extractable metals in leachates or aquatic extracts from the biosolids; more correlations between physicochemical characteristics and toxicity endpoints have been found such as between phytotoxicity and ammonium N in biosolids or their liquid extracts, or between phytotoxicity and salinity. An inverse correlation between earthworm/collembola mortality and stable organic matter has also been found. Basing the appropriateness of biosolids only on chemical analyses for pollutants is not cost-effective. To enable risk characterization and subsequent risk mitigation it is important to apply a battery of bioassays on soil macro-organisms and on plants, utilizing a combination of endpoints and established protocols. Through combined analytical quantification and toxicity testing, safe use of biosolids in agriculture can be achieved.


Assuntos
Bioensaio , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Esgotos/química , Animais , Oligoquetos/efeitos dos fármacos , Oligoquetos/fisiologia , Fertilizantes , Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Testes de Toxicidade , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade
6.
Sci Total Environ ; 918: 170616, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38311086

RESUMO

The present study investigates the morphological, physicochemical, and structural changes occurred by the UV-B aging process of low-density polyethylene microplastics (LDPE MPs), as well as the bioactive potential of both pristine and UVaged MPs towards healthy peripheral blood lymphocytes. Specifically, LDPE MPs (100-180 µm) prepared by mechanical milling of LDPE pellets, were UV-B irradiated for 120 days (wavelength 280 nm; temperature 25 °C; relative humidity 50 %) and further examined for alterations in their particle size and surface, their functional groups, thermal stability, and crystallinity (by means of SEM, FTIR spectroscopy, XRD patterns, and TGA measurements, respectively). In parallel, isolated human peripheral blood lymphocytes were treated with different concentrations (25-500 µg mL-1) of either pristine or aged MPs (UVfree and UV120d LDPE MPs) for assessing the cytogenotoxic (by means of trypan blue exclusion test and the cytokinesis-block micronucleus assay using cytochalasin-B) and oxidative effects (using the DCFH-DA staining) in both cases. According to the results, UVfree and UV120d-LDPE MPs, with a size ranging from 100 to 180 µm, can differentially promote cytogenotoxic and oxidative alterations in human lymphocytes. In fact, UVfree LDPE MPs not being able to be internalized by cells due to their size, could indirectly promote the onset of mild oxidative and cytogenotoxic damage in human peripheral lymphocytes, via a dose-dependent but size-independent manner. The latter is more profound in case of the irregular-shaped UV120d-LDPE MPs, bearing improved dispersibility and sharp edges (by means of cracks and holes), as well as oxygen-containing and carbonyl groups. To our knowledge, the present findings provide new data regarding the bioactive behavior of pristine and UV-B aged LDPE MPs, at least in the in vitro biological model tested, thus giving new evidence for their size-independent and/or indirect mode of action.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Idoso , Polietileno/toxicidade , Polietileno/química , Plásticos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/toxicidade
7.
Sci Total Environ ; 914: 169815, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184262

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) have become a focal point of research due to their widespread daily use and diverse synthesis methods, including physical, chemical, and environmentally sustainable approaches. These nanoparticles possess unique attributes such as size, shape, and surface functionality, making them particularly intriguing for applications in the biomedical field. The continuous exploration of TiO2 NPs is driven by the quest to enhance their multifunctionality, aiming to create next-generation products with superior performance. Recent research efforts have specifically focused on understanding the anatase and rutile phases of TiO2 NPs and evaluating their potential in various domains, including photocatalytic processes, antibacterial properties, antioxidant effects, and nanohybrid applications. The hypothesis guiding this research is that by exploring different synthesis methods, particularly chemical and environmentally friendly approaches, and incorporating doping and co-doping techniques, the properties of TiO2 NPs can be significantly improved for diverse applications. The study employs a comprehensive approach, investigating the effects of nanoparticle size, shape, dose, and exposure time on performance. The synthesis methods considered encompass both conventional chemical processes and environmentally friendly alternatives, with a focus on how doping and co-doping can enhance the properties of TiO2 NPs. The research unveils valuable insights into the distinct phases of TiO2 NPs and their potential across various applications. It sheds light on the improved properties achieved through doping and co-doping, showcasing advancements in photocatalytic processes, antibacterial efficacy, antioxidant capabilities, and nanohybrid applications. The study concludes by emphasizing regulatory aspects and offering suggestions for product enhancement. It provides recommendations for the reliable application of TiO2 NPs, addressing a comprehensive spectrum of critical aspects in TiO2 NP research and application. Overall, this research contributes to the evolving landscape of TiO2 NP utilization, offering valuable insights for the development of innovative and high-performance products.


Assuntos
Antioxidantes , Nanopartículas , Nanopartículas/química , Titânio/química , Antibacterianos/farmacologia
8.
Sci Total Environ ; 914: 169832, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190919

RESUMO

Antibiotics, recognized as Emerging Contaminants (ECs), have raised concerns due to their pervasive presence in wastewater treatment plants (WWTPs) and subsequent release into aquatic environments, posing potential ecological risks and contributing to the development of antibiotic-resistant genes. The COVID-19 pandemic prompted an unprecedented surge in antibiotic consumption, necessitating a comprehensive assessment of its impact on antibiotic levels in wastewater. In this light, a four-year monitoring study (2020-2023) was conducted in a WWTP located in the Northern Greece (Thessaloniki), employing High-Resolution Mass Spectrometry (HRMS) technology to monitor twenty antibiotics, during distinct phases pre-, during, and post-COVID-19. Our findings revealed that macrolides and fluoroquinolones were among the most often detected categories during the sampling period. Among the compounds detected, azithromycin and clarithromycin showed the most significant increases during the pandemic, doubling their average concentrations. This establishes a clear correlation between the rise in their concentrations and the incidence of COVID-19 cases. A general downward trend after 2021 was attributed to the new restrictions posed in Greece during this year, regarding the liberal prescription of antibiotics. Seasonal variation revealed a minute augmentation of antibiotics' use during the months that infections are increased. Additionally, the study highlights the ecological risks associated with elevated antibiotic presence and emphasizes the need for continued monitoring and regulatory measures to mitigate potential ecological repercussions. These findings contribute to our understanding of the complex interplay between antibiotic consumption, environmental presence, and the COVID-19 pandemic's impact on antibiotic pollution in WWTPs.


Assuntos
COVID-19 , Poluentes Químicos da Água , Humanos , Águas Residuárias , Antibacterianos/análise , Pandemias , Eliminação de Resíduos Líquidos , Grécia/epidemiologia , Monitoramento Ambiental , Poluentes Químicos da Água/análise , COVID-19/epidemiologia
9.
Environ Sci Pollut Res Int ; 31(10): 14662-14689, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280170

RESUMO

Agricultural wastes are potential sustainable adsorbents since they are available in large quantities, are low-cost, and may require little or no treatment, in some cases. In this study, several fruit peels, such as banana, orange, and pomegranate, were collected from local markets and prepared by a simple and eco-friendly method and used as natural adsorbents for the removal of both anionic (Reactive Red 120 (RR120), Reactive Black 5 (RB5), Remazol Brilliant Blue R (RBBR)) and cationic Methylene Blue (MB) dyes found in wastewaters. Many industries, such as leather and textiles, can release huge amounts of synthetic dyes into the wastewater during dyeing processes. These are one of the most important pollutants of water pollution as they cause enormous damage to the water body and also affect the health of organisms due to their toxicity and carcinogenicity. The search for a sustainable and at the same time efficient material for the removal of a wide variety of dyes is the innovation of this work. These peels were prepared by washing, drying, grinding, and finally sieving, under natural sustainable conditions. Porosometry (BET analysis), FTIR, SEM/EDS, and XRD techniques were used to characterize the fruit peels before and after the adsorption process. Factors affecting the adsorption of dyes (adsorbent dosage, pH solution, initial concentration of dyes, contact time, and temperature) were investigated. According to the results, in terms of the effectiveness of fruit peels as (natural) adsorbent materials, for anionic dyes, 5.0-6.0 g/L of banana or orange dry peels was sufficient to remove near or even more than 90% anionic dyes at pH 2.0, and 4.0 g/L was sufficient to remove 98% of cationic MB dye at pH 9.0. Similar amount of pomegranate peels had lower efficiency for anionic dyes (50-70%), while cationic MB was still efficiently removed (98%) at pH 9.0. Moreover, the adsorption process in all cases was found to better fit to pseudo-second-order model, in comparison to pseudo-first-order model. According to isotherms, Freundlich model fitted better in some cases to the equilibrium data, while the Langmuir model in others. Finally, this study demonstrates the viability of reusing the banana, orange, and pomegranate peel adsorbents for eight, four, and five cycles, showing a gradual reduction of around 50% of their effectiveness.


Assuntos
Citrus sinensis , Musa , Poluentes Químicos da Água , Águas Residuárias , Corantes/química , Frutas/química , Poluentes Químicos da Água/análise , Cinética , Adsorção , Azul de Metileno/química , Concentração de Íons de Hidrogênio
10.
Sci Total Environ ; 913: 169489, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159747

RESUMO

Globally recognized as emergent contaminants, microplastics (MPs) are prevalent in aquaculture habitats and subject to intense management. Aquaculture systems are at risk of microplastic contamination due to various channels, which worsens the worldwide microplastic pollution problem. Organic contaminants in the environment can be absorbed by and interact with microplastic, increasing their toxicity and making treatment more challenging. There are two primary sources of microplastics: (1) the direct release of primary microplastics and (2) the fragmentation of plastic materials resulting in secondary microplastics. Freshwater, atmospheric and marine environments are also responsible for the successful migration of microplastics. Until now, microplastic pollution and its effects on aquaculture habitats remain insufficient. This article aims to provide a comprehensive review of the impact of microplastics on aquatic ecosystems. It highlights the sources and distribution of microplastics, their physical and chemical properties, and the potential ecological consequences they pose to marine and freshwater environments. The paper also examines the current scientific knowledge on the mechanisms by which microplastics affect aquatic organisms and ecosystems. By synthesizing existing research, this review underscores the urgent need for effective mitigation strategies and further investigation to safeguard the health and sustainability of aquatic ecosystems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/toxicidade , Ecossistema , Plásticos , Monitoramento Ambiental , Poluentes Químicos da Água/análise
11.
Environ Sci Pollut Res Int ; 30(57): 119627-119653, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37962753

RESUMO

Metallurgy is pivotal for societal progress, yet it yields wastewater laden with hazardous compounds. Adhering to stringent environmental mandates, the scientific and industrial sectors are actively researching resilient treatment and disposal solutions for metallurgical effluents. The primary origins of organic pollutants within the metallurgical sector include processes such as coke quenching, steel rolling, solvent extraction, and electroplating. This article provides a detailed analysis of strategies for treating steel industry waste in wastewater treatment. Recent advancements in membrane technologies, adsorption, and various other processes for removing hazardous pollutants from steel industrial wastewater are comprehensively reviewed. The literature review reveals that advanced oxidation processes (AOPs) demonstrate superior effectiveness in eliminating persistent contaminants. However, the major challenges to their industrial-scale implementation are their cost and scalability. Additionally, it was discovered that employing a series of biological reactors instead of single-step biological processes enhances command over microbial communities and operating variables, thus boosting the efficacy of the treatment mechanism (e.g., achieving a chemical oxygen demand (COD) elimination rate of over 90%). This review seeks to conduct an in-depth examination of the current state of treating metallurgical wastewater, with a particular emphasis on strategies for pollutant removal. These pollutants exhibit distinct features influenced by the technologies and workflows unique to their respective processes, including factors such as their composition, physicochemical properties, and concentrations. Therefore, it is of utmost importance for customized treatment and disposal approaches, which are the central focus of this review. In this context, we will explore these methods, highlighting their advantages and characteristics.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Resíduos Industriais/análise , Metalurgia , Aço
12.
Environ Sci Pollut Res Int ; 30(57): 119903-119924, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932616

RESUMO

The escalating issue of water pollution has become a worldwide issue that has captured the attention of numerous scientists. Molecularly imprinted polymers (MIPs) have emerged as adaptable materials with exceptional attributes, including easy synthesis, low cost, remarkable durability, long life, and accessibility. These attributes have motivated researchers to develop novel materials based on MIPs to tackle hazardous contaminants in environmental matrices. The purpose of this paper was to conduct a bibliometric analysis on MIPs' publications, in order to shed light on the developments and focus points of the field. The selected publications were obtained from Scopus database and subjected to a filtering process, resulting in 11,131 relevant publications. The analysis revealed that the leading publication source (journal) is Biosensors and Bioelectronics; the mostly employed keywords are solid-phase extraction, electrochemical sensor, and molecular recognition; and the top contributing countries are China, Iran, and the USA. The Latent Dirichlet Allocation (LDA) algorithm was used for extracting thematic axes from the textual content of the publications. The results of the LDA model showcase that the topic of synthesis and performance of MIPs for environmental applications can be considered as the most dominant topic with a share value of 72.71%. From the analysis, it can be concluded that MIPs are a cross-disciplinary research field.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Polímeros/química , Impressão Molecular/métodos , Extração em Fase Sólida/métodos , Pesquisa
13.
Pestic Biochem Physiol ; 196: 105615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945252

RESUMO

Generations of different synthetic pesticides have been launched over time to maintain balance between production and consumption of the agricultural yield, control various disease programmes, store grains, etc. Pyrethroids, which are supposed to be non-toxic, have been excessively implemented and have contaminated soil and water bodies. Thus, pyrethroids cause severe and dreadful pernicious effects on various life forms residing in soil, air, and water. Various obnoxious effects of pyrethroids have been analyzed in the vertebrate and invertebrate systems of the animal kingdom. Pyrethroids, namely, Cypermethrin, Deltamethrin, Beta-cyfluthrin, Esfenvalerate, Fenvalerate, and Bifenthrin, have set out various types of degenerative and toxic impacts that include oxidative stress, hepatotoxicity, immunotoxicity involving thymic and splenic toxicity, neurotoxicity, nephrotoxicity, foetal toxicity, alterations in serum calcium and phosphate levels, cerebral and bone marrow degeneration, degeneration of the reproductive system, histological alteration, and DNA damage. Bioactive compounds like Diosmin, Curcumin, Rutin, Spirulina platensis, sesame oil, Naringin, Allicin, Piperine, alpha-lipoic acid, alpha-tocopherol, Cyperus rotundus L. tuber extract, herbal syrup from chicory and artichoke leaves, green tea extract, Quercetin, Trans-ferulic acid, Ascorbic acid, Propolis, ethanolic extract of grape pomace, and Melatonin have been reported to sublime the toxic effects of these pesticides. The expanding harmfulness of pesticides is a real and demanding issue that needs to be overcome, and bioactive compounds have been shown to reduce the toxicity in vivo as well as in vitro.


Assuntos
Inseticidas , Praguicidas , Piretrinas , Animais , Inseticidas/toxicidade , Piretrinas/toxicidade , Invertebrados , Vertebrados , Água , Solo
14.
Environ Sci Pollut Res Int ; 30(53): 114032-114043, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37855962

RESUMO

Concern for environmental protection has increased throughout the years from a global perspective. To date, the predominance of adsorption as treatment technique in environmental chemistry remains unchallenged. Moreover, the scientific attention for investigating nanobubbles due to their unique properties has turned the search for their application in environmental processes with special emphasis on water treatment. This study is aimed at investigating the effect of rotation on batch adsorption process using commercial activated carbon as adsorbent material, compared with the widely used method of agitation. As liquid medium, deionized water and deionized water enhanced with nanobubbles (of air) were used. The wastewater was simulated by dissolving a common dye as model pollutant, methylene blue, at concentration of 300 mg/L in the tested liquid. The results indicated that the utilization of nanobubbles resulted in an improvement on adsorption rate, compared to the corresponding values of deionized water solutions. These results may lead to promising applications in the future, since just 1 h of operation increases the water purification and thus provides a simply applied, cost-effective, and rapid alternative.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Rotação , Águas Residuárias , Poluentes Químicos da Água/química , Carvão Vegetal , Azul de Metileno/química , Purificação da Água/métodos , Cinética , Concentração de Íons de Hidrogênio
15.
Nanomaterials (Basel) ; 13(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764629

RESUMO

In the present work, a new method for dermal delivery using nanobubbles (NBs) is investigated. Oxygen NBs are generated in deionized water and used to produce cosmetic formulations with hyaluronic acid as an active ingredient. Nanobubbles result in the improvement of the effect and penetration of the active ingredient through Strat-M, a synthetic membrane that resembles human skin. Experiments conducted with the Franz Cell device confirm the greater penetration of the active ingredient into Strat-M due to NBs, compared to cosmetic formulations that do not contain NBs. The effect of NBs was further examined by measuring UV-Vis and FTIR spectra. A possible mechanism was outlined, too. It was also found that NBs do not change the pH or the FTIR spectrum of the cosmetic serum indicating non-toxicity.

16.
Environ Sci Pollut Res Int ; 30(42): 95039-95053, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37580476

RESUMO

More than 60% of India's population relies on agriculture as their primary source of income, making it the nation's most important economic sector. Rice husk (often abbreviated as RH) is one of the most typical by-products of agricultural production. Every five tonnes of rice that is harvested results in the production of one tonne of husk. The concept of recycling and reusing waste from agricultural production has received interest from a variety of environmental and industrial perspectives. A wide variety of nanomaterials, including nano-zeolite, nanocarbon, and nano-silica, have been discovered in agro-waste. From rice cultivation to the finished product, there was a by-product consisting of husk that comprised 20% of the overall weight, or RH. The percentage of silica in RH ash ranges from 60 to 40%, with the remaining percentage consisting of various minerals. As a direct consequence of this, several distinct approaches to generating and extracting nanomaterial from rice husk have been developed. Because it contains a significant amount of cellulose and lignin, RH is an excellent and economical source of carbon precursor. The goal of this chapter is to produce carbon-based nanomaterials from RH.


Assuntos
Nanoestruturas , Oryza , Carbono
17.
Sci Total Environ ; 900: 166137, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37595927

RESUMO

This research is devoted to assessing the pollution within a Mediterranean Sea area in the East coast of Algeria, which is known for its port and industrial activities. This study aims to assess the health status of the Gulf of Annaba located in the extreme North-East of Algeria by examining the contamination level by trace elements (Cu, Zn, Pb, Cd, Hg) in the sediments and muscles of Mugil cephalus fish. The obtained results manifest significant variations in metal levels in the sediments throughout the stations and the sampling seasons. The contamination by (Zn, Cu, Pb, Cd) of Joannonville and Sidi Salem stations is observed during both seasons whereas at the Chapuis station occurs only during the summer. The contamination indices are higher than 3, hence classifying the sediments of these three stations as "sediments at risk". Joannonville station manifests high levels of Hg only during the summer. For the muscles of M. cephalus, the contamination levels are found to be dependent on the species and the studied station. The fish inhabiting Joannonville and Sidi Salem show higher levels of (Zn, Pb, Cd) compared to the FAO/WHO standards, whereas the Pb level at Chapuis exceeds the standard during summer. Accordingly, the consumption of fish from Joannonville, Sidi Salem and Chapuis stations presents a serious threat regarding the toxicological risks based on the observed levels of contamination.


Assuntos
Mercúrio , Smegmamorpha , Oligoelementos , Animais , Estações do Ano , Argélia , Cádmio , Chumbo , Peixes
18.
Environ Sci Pollut Res Int ; 30(39): 90721-90729, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37460892

RESUMO

The incorporation of plant materials is an effective method to improve the stability of chitosan beads, as it further increases the adsorption of toxic dyes and metals from aqueous systems. In the present study, chitosan gels were impregnated with a novel type of powder as the groundnut hull powder in order to form composite beads by using a simple droplet-based microfluidic system. The beads were then characterised through various techniques such as SEM, TGA, FTIR, and XRD. Microscopic imaging revealed a change in the surface morphology of the composite beads, which became rough and wrinkled with more valley-like features and irregular cracks. FTIR data suggest that the impregnation of groundnut hull powder led to an increase in functional groups. The thermal analysis allowed for the assessment of composite bead hydration contents and indicated the presence of groundnut hull entrapped in the loaded beads, which was corroborated by vibrational spectroscopy. XRD analysis allows us to conclude that there is an involvement of groundnut hull in the chitosan gels, and the consequence of that is the formation of amorphous beads, which would make them suitable for the adsorption of toxic dyes and metals from water systems.


Assuntos
Quitosana , Poluentes Químicos da Água , Arachis , Quitosana/química , Pós , Metais , Corantes , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/química
19.
Environ Sci Pollut Res Int ; 30(31): 77385-77407, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37253914

RESUMO

Carbon nanotubes are among the elicitors that have different effects on plants. Basil as a useful and valuable plant has significant medicinal properties; The aim of this research is to study the effect of different concentrations of functionalized multi-walled carbon nanotubes with phenylalanine and non-functionalized in concentrations of (0, 50, 100, 150 and 200 mg.l-1) and activated carbon on total phenol and flavonoid content, antioxidant capacity, the content of H2O2, reactive oxygen species detection, antioxidant enzyme activity, and the concentration of volatile compounds of basil in the greenhouse culture, in an experiment in the form of a completely randomized design with three replications, and in the faculty of sciences of Urmia university's laboratory. The highest content of total phenol, flavonoid, anthocyanin, antioxidant capacity and hydrogen peroxide content were observed in the 200 mg.l-1 functionalized carbon nanotube. The highest percentage of alpha-Copaene, trans-alpha-Bergamotene, alpha-Guaiene, Bicyclogermacrene, 1,10-di-epi-Cubenol and alpha-Eudesmol compounds at 150 mg.l-1 of functionalized carbon nanotube and the highest percentage of compounds 1,8-cineole and eugenol was observed at 100 mg.l-1 of functionalized carbon nanotube. The compounds of linalool, camphor and anethole also showed their highest amount in treatments of 200, 150 and 50 mg.l-1 of carbon nanotube, respectively. In general, the observations of this research indicated that the use of functionalized carbon nanotubes as a stimulant has increased the antioxidant capacity of basil and on the other hand, it has led to an improving in the content of secondary metabolites.


Assuntos
Nanotubos de Carbono , Ocimum basilicum , Antioxidantes , Flavonoides , Peróxido de Hidrogênio , Fenóis
20.
Environ Sci Pollut Res Int ; 30(29): 73688-73701, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37195607

RESUMO

Dyes are among the main environmental pollutants, due to the high amount of discharge of wastewater, lost in the dyeing process, without any further treatment. Anthraquinone dyes are stable and resistant in the aquatic system. Among the methods that have been applied to remove these dyes from wastewaters, adsorption on activated carbon has been reported as a very effective technique, and its modification with oxides and hydroxides of metals have been used to increase its surface area. In the present study, the production of activated carbon was originated by coconut shells, and a mixture of metals and metalloids, such as magnesium, silicate, lanthanum, and aluminum (AC-Mg-Si-La-Al), was used for its subsequent modification and applied to Remazol Brilliant Blue R (RBBR) removal. AC-Mg-Si-La-Al surface morphology was studied by BET, FTIR, and SEM methods. For the evaluation of AC-Mg-Si-La-Al, several parameters, such as dosage, pH, contact time, and initial RBBR concentration were studied. According to the results, in pH 5.0 ± 0.1, the dye percentage rate reached 100% by applying 0.5 g/L. Therefore, the optimal dose of 0.4 g/L and pH 5.0 ± 0.1 are selected, which leads to 99% removal of RBBR. The experimental data found to better fit to Freundlich isotherm (R2 = 0.9189) and pseudo-second-order kinetic (R2 = 0.9291) models and 4 h were the sufficient time for adsorption. According to thermodynamics, a positive value of ∆H0 (19.661 kJ/mol) suggests the endothermic nature of the process. The AC-Mg-Si-La-Al adsorbent was able to regenerate after 5 cycles of use, showing only a 17% decrease in its efficiency. Because of its effectiveness in full RBBR removal, AC-Mg-Si-La-Al could be further examined for the removal of several other dyes, even anionic or cationic.


Assuntos
Carvão Vegetal , Águas Residuárias , Adsorção , Antraquinonas , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA