RESUMO
Singlet oxygen is a powerful oxidant used in various applications, such as organic synthesis, medicine, and environmental remediation. Organic and inorganic photosensitizers are commonly used to generate this reactive species through energy transfer with the triplet ground state of oxygen. We describe here a series of novel benzophenazine derivatives as a promising class of photosensitizers for singlet oxygen photosensitization. In this study, we investigated the structure-activity relationship of these benzophenazine derivatives. Akin to a molecular compass, the southern fragment was first functionalized with either aromatic tertiary amines, alkyl tertiary amines, aromatic sulfur groups, alkyl sulfur groups, or cyclic ethers. Enhanced photophysical properties (in terms of triplet excited-state lifetime, absorption wavelength, triplet state energy, and O2 quenching capabilities) were obtained with cyclic ether and sulfur groups. Conversely, the presence of an amine moiety was detrimental to the photocatalysts. The western and northern fragments were also investigated and slightly undesirable to negligible changes in photophysical properties were observed. The most promising candidate was then immobilized on silica nanoparticles and its photoactivity was evaluated in the citronellol photooxidation reaction. A high NMR yield of 97 % in desired product was obtained, with only a slight decrease over several recycling runs (85 % in the fourth run). These results provide insights into the design of efficient photosensitizers for singlet oxygen generation and the development of heterogeneous systems.
RESUMO
Shape-preserving conversion reactions have the potential to unlock new routes for self-organization of complex three-dimensional (3D) nanomaterials with advanced functionalities. Specifically, developing such conversion routes toward shape-controlled metal selenides is of interest due to their photocatalytic properties and because these metal selenides can undergo further conversion reactions toward a wide range of other functional chemical compositions. Here, we present a strategy toward metal selenides with controllable 3D architectures using a two-step self-organization/conversion approach. First, we steer the coprecipitation of barium carbonate nanocrystals and silica into nanocomposites with controllable 3D shapes. Second, using a sequential exchange of cations and anions, we completely convert the chemical composition of the nanocrystals into cadmium selenide (CdSe) while preserving the initial shape of the nanocomposites. These architected CdSe structures can undergo further conversion reactions toward other metal selenides, which we demonstrate by developing a shape-preserving cation exchange toward silver selenide. Moreover, our conversion strategy can readily be extended to convert calcium carbonate biominerals into metal selenide semiconductors. Hence, the here-presented self-assembly/conversion strategy opens exciting possibilities toward customizable metal selenides with complex user-defined 3D shapes.