Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 236(5): 1583-1596, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31147734

RESUMO

RATIONALE: Intestinal permeability plays an important role in gut-brain axis communication. Recent studies indicate that intestinal permeability increases in neonate pups during maternal separation (MS). OBJECTIVES: The present study aims to determine whether pharmacological inhibition of myosin light chain kinase (MLCK), which regulates tight junction contraction and controls intestinal permeability, in stressed neonates, protects against the long-term effects of MS. METHODS: Male Wistar rats were exposed to MS (3 h per day from post-natal day (PND)2 to PND14) or left undisturbed and received daily intraperitoneal injection of a MLCK inhibitor (ML-7, 5 mg/kg) or vehicle during the same period. At adulthood, emotional behaviors, corticosterone response to stress, and gut microbiota composition were analyzed. RESULTS: ML-7 restored gut barrier function in MS rats specifically during the neonatal period. Remarkably, ML-7 prevented MS-induced sexual reward-seeking impairment and reversed the alteration of corticosterone response to stress at adulthood. The effects of ML-7 were accompanied by the normalization of the abundance of members of Lachnospiraceae, Clostridiales, Desulfovibrio, Bacteroidales, Enterorhabdus, and Bifidobacterium in the feces of MS rats at adulthood. CONCLUSIONS: Altogether, our work suggests that improvement of intestinal barrier defects during development may alleviate some of the long-term effects of early-life stress and provides new insight on brain-gut axis communication in a context of stress.


Assuntos
Azepinas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Privação Materna , Naftalenos/farmacologia , Estresse Psicológico/metabolismo , Animais , Animais Recém-Nascidos , Azepinas/uso terapêutico , Corticosterona/metabolismo , Relação Dose-Resposta a Droga , Feminino , Microbioma Gastrointestinal/fisiologia , Masculino , Quinase de Cadeia Leve de Miosina/farmacologia , Quinase de Cadeia Leve de Miosina/uso terapêutico , Naftalenos/uso terapêutico , Gravidez , Ratos , Ratos Wistar , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/psicologia , Fatores de Tempo
2.
Brain Struct Funct ; 223(2): 883-895, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29022091

RESUMO

The medial prefrontal cortex (mPFC) is a key area for the regulation of numerous brain functions including stress response and cognitive processes. This brain area is also particularly affected by adversity during early life. Using an animal model in rats, we recently demonstrated that maternal exposure to a high-fat diet (HFD) prevents maternal separation (MS)-induced gene expression alterations in the developing PFC and attenuates several long-term deleterious behavioral effects of MS. In the present study, we ask whether maternal HFD could protect mPFC neurons of pups exposed to early life stress by examining dendritic morphology and spine density in juvenile [postnatal day (PND) 21] and adult rats submitted to MS. Dams were fed either a control or an HFD throughout gestation and lactation, and pups were submitted to MS from PND2 to PND14. We report that maternal HFD prevents MS-induced spine loss at PND21 and dendritic atrophy at adulthood. Furthermore, we show in adult MS rats that PFC-dependent memory extinction deficits are prevented by maternal HFD. Finally, perinatal HFD exposure reverses gut leakiness following stress in pups and seems to exert an anti-stress effect in dams. Overall, our work demonstrates that maternal HFD affects the developing brain and suggests that nutrition, possibly through gut-brain interactions, could modulate mPFC sensitivity to early stress.


Assuntos
Envelhecimento , Dendritos/patologia , Dieta Hiperlipídica , Troca Materno-Fetal/fisiologia , Córtex Pré-Frontal/patologia , Estresse Psicológico/patologia , Estresse Psicológico/prevenção & controle , Animais , Animais Recém-Nascidos , Contagem de Células , Dendritos/ultraestrutura , Feminino , Trato Gastrointestinal/fisiopatologia , Masculino , Neurônios/patologia , Neurônios/ultraestrutura , Odorantes , Permeabilidade , Córtex Pré-Frontal/crescimento & desenvolvimento , Gravidez , Ratos , Ratos Wistar , Privação de Água
3.
Med Sci (Paris) ; 32(1): 93-9, 2016 Jan.
Artigo em Francês | MEDLINE | ID: mdl-26850613

RESUMO

The human newborn is highly dependent on parental care for its survival but also for the healthy development of its brain. A large body of literature demonstrates the impact of early life adversity, even during the prenatal period, on the adult's health. The susceptibility to neuropsychiatric diseases is often potentiated by early stress. If there is an agreement that a critical developmental period exists, the mechanisms underlying the long term effects of early life adversity are still poorly understood. Recent studies in animals highlight the involvement of epigenetic processes in the transmission of such vulnerabilities, notably via modifications in germ cells, which can be transmitted in the next generations.


Assuntos
Suscetibilidade a Doenças , Transtornos Mentais/etiologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Estresse Psicológico/complicações , Adulto , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Modelos Animais de Doenças , Suscetibilidade a Doenças/psicologia , Epigênese Genética , Feminino , Humanos , Recém-Nascido , Transtornos Mentais/epidemiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Estresse Psicológico/epidemiologia
4.
Psychoneuroendocrinology ; 53: 82-93, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614359

RESUMO

Epidemiological observations report an increase in fat consumption associated with low intake of n-3 relative to n-6 polyunsaturated fatty acids (PUFAs) in women of childbearing age. However, the impact of these maternal feeding habits on cognitive function in the offspring is unknown. This study aims to investigate the impact of early exposure to a high-fat diet (HFD) with an unbalanced n-6/n-3 PUFAs ratio on hippocampal function in adult rats. Furthermore, we explored the effects of perinatal HFD combined with exposure to HFD after weaning. Dams were fed a control diet (C, 12% of energy from lipids, n-6/n-3 PUFAs ratio: 5) or HFD (HF, 39% of energy from lipids, n-6/n-3 PUFAs ratio: 39) throughout gestation and lactation. At weaning, offspring were placed either on control (C-C, HF-C) or high-fat (HF-HF) diets. In adulthood, hippocampus-dependent memory was assessed using the water-maze task and potential hippocampal alterations were determined by studying PUFA levels, gene expression, neurogenesis and astrocyte morphology. Perinatal HFD induced long-lasting metabolic alterations and some changes in gene expression in the hippocampus, but had no effect on memory. In contrast, spatial memory was impaired in animals exposed to HFD during the perinatal period and maintained on this diet. HF-HF rats also exhibited low n-3 and high n-6 PUFA levels, decreased neurogenesis and downregulated expression of several plasticity-related genes in the hippocampus. To determine the contribution of the perinatal diet to the memory deficits reported in HF-HF animals, an additional experiment was conducted in which rats were only exposed to HFD starting at weaning (C-HF). Interestingly, memory performance in this group was similar to controls. Overall, our results suggest that perinatal exposure to HFD with an unbalanced n-6/n-3 ratio sensitizes the offspring to the adverse effects of subsequent high-fat intake on hippocampal function.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Memória Espacial/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Feminino , Lactação , Gravidez , Ratos , Ratos Wistar , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA