Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791083

RESUMO

Eslicarbazepine acetate (ESL) is a third-generation antiepileptic drug indicated as monotherapy for adults with newly diagnosed epilepsy and as adjunctive therapy for the treatment of partial seizures. Our aim was to assess the effectiveness and safety of both acute and repeated ESL administration against reflex audiogenic seizures, as shown by the Genetic Audiogenic Seizures Hamster from Salamanca (GASH/Sal). Animals were subject to the intraperitoneal administration of ESL, applying doses of 100, 150 and 200 mg/kg for the acute study, whereas a daily dose of 100 mg/kg was selected for the subchronic study, which lasted 14 days. In both studies, the anticonvulsant effect of the therapy was evaluated using neuroethological methods. To assess the safety of the treatment, behavioral tests were performed, hematological and biochemical liver profiles were obtained, and body weight was monitored. In addition, the ESL levels in blood were measured after the acute administration of a 200 mg/kg dose. Treatment with ESL caused a reduction in seizure severity. No statistically significant differences were detected between the selected doses or between the acute or repeated administration of the drug. To summarize, the intraperitoneal administration of ESL is safe and shows an anticonvulsant effect in the GASH/Sal.

2.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069190

RESUMO

Epilepsy is a neurological disorder characterized by abnormal neuronal excitability, with glutamate playing a key role as the predominant excitatory neurotransmitter involved in seizures. Animal models of epilepsy are crucial in advancing epilepsy research by faithfully replicating the diverse symptoms of this disorder. In particular, the GASH/Sal (genetically audiogenic seizure-prone hamster from Salamanca) model exhibits seizures resembling human generalized tonic-clonic convulsions. A single nucleotide polymorphism (SNP; C9586732T, p.His289Tyr) in the Grik1 gene (which encodes the kainate receptor GluK1) has been previously identified in this strain. The H289Y mutation affects the amino-terminal domain of GluK1, which is related to the subunit assembly and trafficking. We used confocal microscopy in Xenopus oocytes to investigate how the H289Y mutation, compared to the wild type (WT), affects the expression and cell-surface trafficking of GluK1 receptors. Additionally, we employed the two-electrode voltage-clamp technique to examine the functional effects of the H289Y mutation. Our results indicate that this mutation increases the expression and incorporation of GluK1 receptors into an oocyte's membrane, enhancing kainate-evoked currents, without affecting their functional properties. Although further research is needed to fully understand the molecular mechanisms responsible for this epilepsy, the H289Y mutation in GluK1 may be part of the molecular basis underlying the seizure-prone circuitry in the GASH/Sal model.


Assuntos
Epilepsia Reflexa , Cricetinae , Animais , Humanos , Xenopus laevis/metabolismo , Epilepsia Reflexa/genética , Convulsões/metabolismo , Receptores de Ácido Caínico/metabolismo , Oócitos/metabolismo
3.
J Chem Inf Model ; 63(22): 7083-7096, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37917937

RESUMO

Epilepsy is a neurological disorder characterized by recurrent seizures that arise from abnormal electrical activity in the brain. Voltage-gated sodium channels (NaVs), responsible for the initiation and propagation of action potentials in neurons, play a critical role in the pathogenesis of epilepsy. This study sought to discover potential anticonvulsant compounds that interact with NaVs, specifically, the brain subtype hNaV1.2. A ligand-based QSAR model and a docking model were constructed, validated, and applied in a parallel virtual screening over the DrugBank database. Montelukast, Novobiocin, and Cinnarizine were selected for in vitro testing, using the patch-clamp technique, and all of them proved to inhibit hNaV1.2 channels heterologously expressed in HEK293 cells. Two hits were evaluated in the GASH/Sal model of audiogenic seizures and demonstrated promising activity, reducing the severity of sound-induced seizures at the doses tested. The combination of ligand- and structure-based models presents a valuable approach for identifying potential NaV inhibitors. These findings may provide a basis for further research into the development of new antiseizure drugs for the treatment of epilepsy.


Assuntos
Anticonvulsivantes , Epilepsia , Humanos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Células HEK293 , Ligantes , Epilepsia/tratamento farmacológico , Convulsões/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.7
4.
Front Neurol ; 14: 1207616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448751

RESUMO

Background: The balance between the activity of the Na+/K+/Cl- cotransporter (NKCC1) that introduces Cl- into the cell and the K+/Cl- cotransporter (KCC2) that transports Cl- outside the cell is critical in determining the inhibitory or excitatory outcome of GABA release. Mounting evidence suggests that the impairment of GABAergic inhibitory neurotransmission plays a crucial role in the pathophysiology of epilepsy, both in patients and animal models. Previous studies indicate that decreased KCC2 expression is linked to audiogenic seizures in GASH/Sal hamsters, highlighting that Cl- imbalance can cause neuronal hyperexcitability. In this study, we aimed to investigate whether the Na+/K+/Cl- cotransporter NKCC1 is also affected by audiogenic seizures and could, therefore, play a role in neuronal hyperexcitability within the GASH/Sal epilepsy model. Methods: NKCC1 protein expression in both the GASH/Sal strain and wild type hamsters was analyzed by immunohistochemistry and Western blotting techniques. Brain regions examined included cortex, hippocampus, hypothalamus, inferior colliculus and pons-medulla oblongata, which were evaluated both at rest and after sound-inducing seizures in GASH/Sal hamsters. A complementary analysis of NKCC1 gene slc12a2 expression was conducted by real-time PCR. Finally, protein and mRNA levels of glutamate decarboxylase GAD67 were measured as an indicator of GABA release. Results: The induction of seizures caused significant changes in NKCC1 expression in epileptic GASH/Sal hamsters, despite the similar brain expression pattern of NKCC1 in GASH/Sal and wild type hamsters in the absence of seizures. Interestingly, the regulation of brain NKCC1 by seizures demonstrated regional specificity, as protein levels exclusively increased in the hippocampus and hypothalamus. Complementary real-time PCR analysis revealed that NKCC1 regulation was post-transcriptional only in the hypothalamus. In addition, seizures also modulated GAD67 mRNA levels in a brain region-specific manner. The increased GAD67 expression in the hippocampus and hypothalamus of the epileptic hamster brain suggests that NKCC1 upregulation overlaps with GABA release in these regions during seizures. Conclusions: Our results indicate that seizure induction causes dysregulation of NKCC1 expression in GASH/Sal animals, which overlaps with changes in GABA release. These observations provide evidence for the critical role of NKCC1 in how seizures affect neuronal excitability, and support NKCC1 contribution to the development of secondary foci of epileptogenic activity.

5.
Diagnostics (Basel) ; 13(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980356

RESUMO

The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca) is a model of audiogenic seizures with the epileptogenic focus localized in the inferior colliculus (IC). The sound-induced seizures exhibit a short latency (7-9 s), which implies innate protein disturbances in the IC as a basis for seizure susceptibility and generation. Here, we aim to study the protein profile in the GASH/Sal IC in comparison to controls. Protein samples from the IC were processed for enzymatic digestion and then analyzed by mass spectrometry in Data-Independent Acquisition mode. After identifying the proteins using the UniProt database, we selected those with differential expression and performed ontological analyses, as well as gene-protein interaction studies using bioinformatics tools. We identified 5254 proteins; among them, 184 were differentially expressed proteins (DEPs), with 126 upregulated and 58 downregulated proteins, and 10 of the DEPs directly related to epilepsy. Moreover, 12 and 7 proteins were uniquely found in the GASH/Sal or the control. The results indicated a protein profile alteration in the epileptogenic nucleus that might underlie the inborn occurring audiogenic seizures in the GASH/Sal model. In summary, this study supports the use of bioinformatics methods in proteomics to delve into the relationship between molecular-level protein mechanisms and the pathobiology of rodent models of audiogenic seizures.

6.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203262

RESUMO

Vagus nerve stimulation (VNS) is an adjuvant neuromodulation therapy for the treatment of refractory epilepsy. However, the mechanisms behind its effectiveness are not fully understood. Our aim was to develop a VNS protocol for the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) in order to evaluate the mechanisms of action of the therapy. The rodents were subject to VNS for 14 days using clinical stimulation parameters by implanting a clinically available neurostimulation device or our own prototype for laboratory animals. The neuroethological assessment of seizures and general behavior were performed before surgery, and after 7, 10, and 14 days of VNS. Moreover, potential side effects were examined. Finally, the expression of 23 inflammatory markers in plasma and the left-brain hemisphere was evaluated. VNS significantly reduced seizure severity in GASH/Sal without side effects. No differences were observed between the neurostimulation devices. GASH/Sal treated with VNS showed statistically significant reduced levels of interleukin IL-1ß, monocyte chemoattractant protein MCP-1, matrix metalloproteinases (MMP-2, MMP-3), and tumor necrosis factor TNF-α in the brain. The described experimental design allows for the study of VNS effects and mechanisms of action using an implantable device. This was achieved in a model of convulsive seizures in which VNS is effective and shows an anti-inflammatory effect.


Assuntos
Epilepsia Reflexa , Estimulação do Nervo Vago , Animais , Cricetinae , Convulsões/terapia , Encéfalo , Terapia Combinada , Interleucina-1beta
8.
Front Behav Neurosci ; 15: 613798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841106

RESUMO

The endocannabinoid system modulates epileptic seizures by regulating neuronal excitability. It has become clear that agonist activation of central type I cannabinoid receptors (CB1R) reduces epileptogenesis in pre-clinical animal models of epilepsy. The audiogenic seizure-prone hamster GASH/Sal is a reliable experimental model of generalized tonic-clonic seizures in response to intense sound stimulation. However, no studies hitherto had investigated CB1R in the GASH/Sal. Although the distribution of CB1R has been extensively studied in mammalian brains, their distribution in the Syrian golden hamster brain also remains unknown. The objective of this research is to determine by immunohistochemistry the differential distribution of CB1R in the brains of GASH/Sal animals under seizure-free conditions, by comparing the results with wild-type Syrian hamsters as controls. CB1R in the GASH/Sal showed a wide distribution in many nuclei of the central nervous system. These patterns of CB1R-immunolabeling are practically identical between the GASH/Sal model and control animals, varying in the intensity of immunostaining in certain regions, being slightly weaker in the GASH/Sal than in the control, mainly in brain regions associated with epileptic networks. The RT-qPCR analysis confirms these results. In summary, our study provides an anatomical basis for further investigating CB1R in acute and kindling audiogenic seizure protocols in the GASH/Sal model as well as exploring CB1R activation via exogenously administered cannabinoid compounds.

9.
Epilepsy Behav ; 121(Pt B): 106594, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31685382

RESUMO

Epilepsy is a chronic neurological disorder characterized by abnormal neuronal activity that arises from imbalances between excitatory and inhibitory synapses, which are highly correlated to functional and structural changes in specific brain regions. The difference between the normal and the epileptic brain may harbor genetic alterations, gene expression changes, and/or protein alterations in the epileptogenic nucleus. It is becoming increasingly clear that such differences contribute to the development of distinct epilepsy phenotypes. The current major challenges in epilepsy research include understanding the disease progression and clarifying epilepsy classifications by searching for novel molecular biomarkers. Thus, the application of molecular techniques to carry out comprehensive studies at deoxyribonucleic acid, messenger ribonucleic acid, and protein levels is of utmost importance to elucidate molecular dysregulations in the epileptic brain. The present review focused on the great diversity of technical approaches available and new research methodology, which are already being used to study molecular alterations underlying epilepsy. We have grouped the different techniques according to each step in the flow of information from DNA to RNA to proteins, and illustrated with specific examples in animal models of epilepsy, some of which are our own. Separately and collectively, the genomic and proteomic techniques, each with its own strengths and limitations, provide valuable information on molecular mechanisms underlying seizure susceptibility and regulation of neuronal excitability. Determining the molecular differences between genetic rodent models of epilepsy and their wild-type counterparts might be a key in determining mechanisms of seizure susceptibility and epileptogenesis as well as the discovery and development of novel antiepileptic agents. This article is part of the Special Issue "NEWroscience 2018".


Assuntos
Epilepsia , Roedores , Animais , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Proteômica , Convulsões/tratamento farmacológico
10.
Brain Sci ; 10(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947873

RESUMO

When a low-salience stimulus of any type of sensory modality-auditory, visual, tactile-immediately precedes an unexpected startle-like stimulus, such as the acoustic startle reflex, the startle motor reaction becomes less pronounced or is even abolished. This phenomenon is known as prepulse inhibition (PPI), and it provides a quantitative measure of central processing by filtering out irrelevant stimuli. As PPI implies plasticity of a reflex and is related to automatic or attentional processes, depending on the interstimulus intervals, this behavioral paradigm might be considered a potential marker of short- and long-term plasticity. Assessment of PPI is directly related to the examination of neural sensorimotor gating mechanisms, which are plastic-adaptive operations for preventing overstimulation and helping the brain to focus on a specific stimulus among other distracters. Despite their obvious importance in normal brain activity, little is known about the intimate physiology, circuitry, and neurochemistry of sensorimotor gating mechanisms. In this work, we extensively review the current literature focusing on studies that used state-of-the-art techniques to interrogate the neuroanatomy, connectomics, neurotransmitter-receptor functions, and sex-derived differences in the PPI process, and how we can harness it as biological marker in neurological and psychiatric pathology.

11.
Front Neurosci ; 14: 508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528245

RESUMO

The Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal), an animal model of reflex epilepsy, exhibits generalized tonic-clonic seizures in response to loud sound with the epileptogenic focus localized in the inferior colliculus (IC). Ictal events in seizure-prone strains cause gene deregulation in the epileptogenic focus, which can provide insights into the epileptogenic mechanisms. Thus, the present study aimed to determine the expression profile of key genes in the IC of the GASH/Sal after the status epilepticus. For such purpose, we used RNA-Seq to perform a comparative study between the IC transcriptome of GASH/Sal and that of control hamsters both subjected to loud sound stimulation. After filtering for normalization and gene selection, a total of 36 genes were declared differentially expressed from the RNA-seq analysis in the IC. A set of differentially expressed genes were validated by RT-qPCR showing significant differentially expression between GASH/Sal hamsters and Syrian control hamsters. The confirmed differentially expressed genes were classified on ontological categories associated with epileptogenic events similar to those produced by generalized tonic seizures in humans. Subsequently, based on the result of metabolomics, we found the interleukin-4 and 13-signaling, and nucleoside transport as presumably altered routes in the GASH/Sal model. This research suggests that seizures in GASH/Sal hamsters are generated by multiple molecular substrates, which activate biological processes, molecular processes, cellular components and metabolic pathways associated with epileptogenic events similar to those produced by tonic seizures in humans. Therefore, our study supports the use of the GASH/Sal as a valuable animal model for epilepsy research, toward establishing correlations with human epilepsy and searching new biomarkers of epileptogenesis.

12.
Hear Res ; 392: 107973, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32402894

RESUMO

Rodent models of audiogenic seizures, in which seizures are precipitated by an abnormal response of the brain to auditory stimuli, are crucial to investigate the neural bases underlying ictogenesis. Despite significant advances in understanding seizure generation in the inferior colliculus, namely the epileptogenic nucleus, little is known about the contribution of lower auditory stations to the seizure-prone network. Here, we examined the cochlea and cochlear nucleus of the genetic audiogenic seizure hamster from Salamanca (GASH/Sal), a model of reflex epilepsy that exhibits generalized tonic-clonic seizures in response to loud sound. GASH/Sal animals under seizure-free conditions were compared with matched control hamsters in a multi-technical approach that includes auditory brainstem responses (ABR) testing, histology, scanning electron microscopy analysis, immunohistochemistry, quantitative morphometry and gene expression analysis (RT-qPCR). The cochlear histopathology of the GASH/Sal showed preservation of the sensory hair cells, but a significant loss of spiral ganglion neurons and mild atrophy of the stria vascularis. At the electron microscopy level, the reticular lamina exhibited disarray of stereociliary tufts with blebs, loss or elongated stereocilia as well as non-parallel rows of outer hair cells due to protrusions of Deiters' cells. At the molecular level, the abnormal gene expression patterns of prestin, cadherin 23, protocadherin 15, vesicular glutamate transporters 1 (Vglut1) and -2 (Vglut2) indicated that the hair-cell mechanotransduction and cochlear amplification were markedly altered. These were manifestations of a cochlear neuropathy that correlated to ABR waveform I alterations and elevated auditory thresholds. In the cochlear nucleus, the distribution of VGLUT2-immunolabeled puncta was differently affected in each subdivision, showing significant increases in magnocellular regions of the ventral cochlear nucleus and drastic reductions in the granule cell domain. This modified inputs lead to disruption of Vglut1 and Vglut2 gene expression in the cochlear nucleus. In sum, our study provides insight into the morphological and molecular traits associated with audiogenic seizure susceptibility in the GASH/Sal, suggesting an upward spread of abnormal glutamatergic transmission throughout the primary acoustic pathway to the epileptogenic region.


Assuntos
Limiar Auditivo , Comportamento Animal , Cóclea/fisiopatologia , Epilepsia Reflexa/fisiopatologia , Epilepsia Tônico-Clônica/fisiopatologia , Audição , Animais , Cóclea/metabolismo , Cóclea/ultraestrutura , Cricetinae , Modelos Animais de Doenças , Epilepsia Reflexa/genética , Epilepsia Reflexa/metabolismo , Epilepsia Reflexa/psicologia , Epilepsia Tônico-Clônica/genética , Epilepsia Tônico-Clônica/metabolismo , Epilepsia Tônico-Clônica/psicologia , Ácido Glutâmico/metabolismo , Masculino , Ruído , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
13.
PLoS One ; 15(4): e0231603, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32243467

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0229953.].

14.
PLoS One ; 15(3): e0229953, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32168507

RESUMO

Epilepsy is a complex neurological disorder characterized by sudden and recurrent seizures, which are caused by various factors, including genetic abnormalities. Several animal models of epilepsy mimic the different symptoms of this disorder. In particular, the genetic audiogenic seizure hamster from Salamanca (GASH/Sal) animals exhibit sound-induced seizures similar to the generalized tonic seizures observed in epileptic patients. However, the genetic alterations underlying the audiogenic seizure susceptibility of the GASH/Sal model remain unknown. In addition, gene variations in the GASH/Sal might have a close resemblance with those described in humans with epilepsy, which is a prerequisite for any new preclinical studies that target genetic abnormalities. Here, we performed whole exome sequencing (WES) in GASH/Sal animals and their corresponding controls to identify and characterize the mutational landscape of the GASH/Sal strain. After filtering the results, moderate- and high-impact variants were validated by Sanger sequencing, assessing the possible impact of the mutations by "in silico" reconstruction of the encoded proteins and analyzing their corresponding biological pathways. Lastly, we quantified gene expression levels by RT-qPCR. In the GASH/Sal model, WES showed the presence of 342 variations, in which 21 were classified as high-impact mutations. After a full bioinformatics analysis to highlight the high quality and reliable variants, the presence of 3 high-impact and 15 moderate-impact variants were identified. Gene expression analysis of the high-impact variants of Asb14 (ankyrin repeat and SOCS Box Containing 14), Msh3 (MutS Homolog 3) and Arhgef38 (Rho Guanine Nucleotide Exchange Factor 38) genes showed a higher expression in the GASH/Sal than in control hamsters. In silico analysis of the functional consequences indicated that those mutations in the three encoded proteins would have severe functional alterations. By functional analysis of the variants, we detected 44 significantly enriched pathways, including the glutamatergic synapse pathway. The data show three high-impact mutations with a major impact on the function of the proteins encoded by these genes, although no mutation in these three genes has been associated with some type of epilepsy until now. Furthermore, GASH/Sal animals also showed gene variants associated with different types of epilepsy that has been extensively documented, as well as mutations in other genes that encode proteins with functions related to neuronal excitability, which could be implied in the phenotype of the GASH/Sal. Our findings provide valuable genetic and biological pathway data associated to the genetic burden of the audiogenic seizure susceptibility and reinforce the need to validate the role of each key mutation in the phenotype of the GASH/Sal model.


Assuntos
Biologia Computacional , Epilepsia Reflexa/epidemiologia , Epilepsia/epidemiologia , Convulsões/epidemiologia , Estimulação Acústica , Animais , Cricetinae , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/patologia , Epilepsia Reflexa/tratamento farmacológico , Epilepsia Reflexa/genética , Epilepsia Reflexa/patologia , Feminino , Regulação da Expressão Gênica/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Masculino , Proteína 3 Homóloga a MutS/genética , Mutação/genética , Convulsões/tratamento farmacológico , Convulsões/genética , Convulsões/patologia , Sequenciamento do Exoma
15.
Front Neurol ; 11: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117006

RESUMO

The Wistar Audiogenic Rat (WAR) and the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) strains are audiogenic epilepsy models, in which seizures are triggered by acoustic stimulation. These strains were developed by selective reproduction and have a genetic background with minimal or no variation. In the current study, we evaluated the transcriptome of the inferior colliculus, the epileptogenic nucleus, of both audiogenic models, in order to get insights into common molecular aspects associated to their epileptic phenotype. Based on GASH/Sal RNA-Seq and WAR microarray data, we performed a comparative analysis that includes selection and functional annotation of differentially regulated genes in each model, transcriptional evaluation by quantitative reverse transcription PCR of common genes identified in both transcriptomes and immunohistochemistry. The microarray data revealed 71 genes with differential expression in WAR, and the RNA-Seq data revealed 64 genes in GASH/Sal, showing common genes in both models. Analysis of transcripts showed that Egr3 was overexpressed in WAR and GASH/Sal after audiogenic seizures. The Npy, Rgs2, Ttr, and Abcb1a genes presented the same transcriptional profile in the WAR, being overexpressed in the naïve and stimulated WAR in relation to their controls. Npy appeared overexpressed only in the naïve GASH/Sal compared to its control, while Rgs2 and Ttr genes appeared overexpressed in naïve GASH/Sal and overexpressed after audiogenic seizure. No statistical difference was observed in the expression of Abcb1a in the GASH/Sal model. Compared to control animals, the immunohistochemical analysis of the inferior colliculus showed an increased immunoreactivity for NPY, RGS2, and TTR in both audiogenic models. Our data suggest that WAR and GASH/Sal strains have a difference in the timing of gene expression after seizure, in which GASH/Sal seems to respond more quickly. The transcriptional profile of the Npy, Rgs2, and Ttr genes under free-seizure conditions in both audiogenic models indicates an intrinsic expression already established in the strains. Our findings suggest that these genes may be causing small changes in different biological processes involved in seizure occurrence and response, and indirectly contributing to the susceptibility of the WAR and GASH/Sal models to audiogenic seizures.

16.
Front Behav Neurosci ; 14: 612624, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551767

RESUMO

Despite evidence that supports cannabidiol (CBD) as an anticonvulsant agent, there remains controversy over the antiseizure efficacy, possible adverse effects, and synergistic interactions with classic antiepileptics such as valproate (VPA). The genetic audiogenic seizure hamster from the University of Salamanca (GASH/Sal) is a reliable experimental model of generalized tonic-clonic seizures in response to intense sound stimulation. The present study examines the behavioral and molecular effects of acute and chronic intraperitoneal administrations of VPA (300 mg/kg) and CBD (100 mg/kg) on the GASH/Sal audiogenic seizures, as well as the coadministration of both drugs. The GASH/Sal animals were examined prior to and after the corresponding treatment at 45 min, 7 days, and 14 days for seizure severity and neuroethology, open-field behaviors, body weight variations, and various hematological and biochemical parameters. Furthermore, the brain tissue containing the inferior colliculus (so-called epileptogenic nucleus) was processed for reverse transcription-quantitative polymerase chain reaction analysis to determine the treatment effects on the gene expression of neuronal receptors associated with drug actions and ictogenesis. Our results indicated that single dose of VPA helps prevent the animals from getting convulsions, showing complete elimination of seizures, whereas 7 days of chronic VPA treatment had few effects in seizure behaviors. Acute CBD administration showed subtle attenuation of seizure behaviors, increasing seizure latency and decreasing the duration of the convulsion phase, but without entirely seizure abolition. Chronic CBD treatments had no significant effects on sound-induced seizures, although some animals slightly improved seizure severity. Acute and chronic CBD treatments have no significant adverse effects on body weight, hematological parameters, and liver function, although locomotor activity was reduced. The combination of VPA and CBD did not alter the therapeutic outcome of the VPA monotherapy, showing no apparent synergistic effects. As compared to sham animals, chronic treatments with CBD caused abnormal mRNA expression levels for Trpv1, Adora1, Slc29a1, and Cnr1 genes, whereas no differences in gene expression were found for Htr1a and Sigmar1. Our study shed light on the behavioral and molecular effects of CBD and VPA on the GASH/Sal model and constituted the basis to develop further studies on the pharmacological effects of CBD and its interactions with other anticonvulsants.

17.
MethodsX ; 6: 2046-2051, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31667102

RESUMO

The acoustic startle reflex (ASR) is a short and intense defensive reaction in response to a loud and unexpected acoustic stimulus. The ASR can be modulated through sensorimotor gating processes, such as prepulse inhibition (PPI), a neurological phenomenon in which a weak pre-stimulus inhibits the reaction to a startling stimulus. The reduction of the amplitude of ASR reflects the ability of the CNS to adapt to a salient sensory stimulus when a preceding weaker signal is perceived. Despite its obvious importance for translational research studies, when the data acquisition window is not properly configured, the measurement of ASR may contain artifacts or be incorrect altogether. In this paper, we issue our recommendations for the correct definition of the response window to achieve good-quality ASR/PPI measurements in order to standardize and implement the method across conditions. •Parameters for detection of peak responses need to be carefully configured, otherwise the risk of obtaining unwanted artifacts or high signal-to-noise ratio increases considerably.•Custom settings yield traces with tighter baseline, higher amplitude, and shorter latency compared to factory default settings.•FFT heatmaps show a solid color-correlation when using custom settings, without the appearance of artifacts.

18.
Behav Brain Res ; 376: 112077, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31499090

RESUMO

Rivastigmine (RVT) is a reversible inhibitor of cholinesterase approved worldwide for the treatment of cognitive dysfunctions, especially in Alzheimer's disease. Most previous pre-clinical studies have examined the effects of RVT treatment in a wide variety of pathological research models. Nonetheless, the effects of this drug on sensorimotor gating, memory, and learning tasks in healthy subjects remains unclear. In this study, we investigate the procognitive effects of RVT treatment in healthy rats through sensorimotor gating evaluations (measured as prepulse inhibition of the acoustic startle reflex), active avoidance learning, and spatial memory learning in a radial maze. There is an increase in the amplitude of the startle reflex in RVT-treated rats compared to the control groups, whereas the latency remained constant. Sensorimotor gating values were also incremented compared to those values from controls. In active avoidance, rats treated with RVT learned faster to successfully perform the task compared to controls, but afterwards all groups exhibited virtually identical results. During the sessions in the radial maze, RVT-treated rats committed fewer errors in both the working and reference memory compared to controls. All in all, our results support the hypothesis that RVT treatment may entail procognitive effects in healthy subjects.


Assuntos
Reflexo de Sobressalto/fisiologia , Rivastigmina/farmacologia , Córtex Sensório-Motor/efeitos dos fármacos , Estimulação Acústica , Animais , Aprendizagem da Esquiva/fisiologia , Encéfalo/fisiologia , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Colinesterases/metabolismo , Cognição/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Ratos Wistar , Reflexo de Sobressalto/efeitos dos fármacos , Rivastigmina/metabolismo , Filtro Sensorial/fisiologia , Aprendizagem Espacial/fisiologia , Memória Espacial/fisiologia
19.
Eur J Appl Physiol ; 119(4): 921-932, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30689099

RESUMO

PURPOSE: The elite athlete is fine-tuned all around to deliver favorable results in sporting events. In this study, we address the question of whether basic movements-such as reflexes-and heterogeneous attentional modulation components-such as sensorimotor gating mechanisms-are also tuned up to maximize the results of middle-distance runners in physical conditioning tests. METHODS: We selected an array of professional middle-distance runners and healthy counterparts that were submitted to measurement of (1) physical conditioning parameters, including somatotype, jump, strength, and flexibility tests; and (2) sensorimotor gating mechanisms, including acoustic startle reflex, prepulse inhibition, and habituation. RESULTS: Our results showed athletes scored better on the athletic tests compared to controls, as expected. They also exhibited a lower startle amplitude, while maintaining higher prepulse inhibition values. They reacted faster to the acoustic stimuli, and sex-related differences-found in controls-were not present in athletes. Our data also pointed out to substantial correlations between sensorimotor gating and physical conditioning parameters. CONCLUSIONS: All in all, these data may point to physical conditioning-driven neural plasticity of brain sensorimotor gating circuits in charge of triggering involuntary movements to harness control and efficiency over reflexed muscle activity.


Assuntos
Desempenho Atlético/fisiologia , Exercício Físico/fisiologia , Inibição Neural/fisiologia , Filtro Sensorial/fisiologia , Estimulação Acústica/métodos , Adulto , Atenção/fisiologia , Feminino , Humanos , Masculino , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Caracteres Sexuais , Adulto Jovem
20.
Brain Struct Funct ; 223(6): 2733-2751, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29574585

RESUMO

The acoustic startle reflex (ASR) is a short and intense defensive reaction in response to a loud and unexpected acoustic stimulus. In the rat, a primary startle pathway encompasses three serially connected central structures: the cochlear root neurons, the giant neurons of the nucleus reticularis pontis caudalis (PnC), and the spinal motoneurons. As a sensorimotor interface, the PnC has a central role in the ASR circuitry, especially the integration of different sensory stimuli and brain states into initiation of motor responses. Since the basal ganglia circuits control movement and action selection, we hypothesize that their output via the substantia nigra (SN) may interplay with the ASR primary circuit by providing inputs to PnC. Moreover, the pedunculopontine tegmental nucleus (PPTg) has been proposed as a functional and neural extension of the SN, so it is another goal of this study to describe possible anatomical connections from the PPTg to PnC. Here, we made 6-OHDA neurotoxic lesions of the SN pars compacta (SNc) and submitted the rats to a custom-built ASR measurement session to assess amplitude and latency of motor responses. We found that following lesion of the SNc, ASR amplitude decreased and latency increased compared to those values from the sham-surgery and control groups. The number of dopamine neurons remaining in the SNc after lesion was also estimated using a stereological approach, and it correlated with our behavioral results. Moreover, we employed neural tract-tracing techniques to highlight direct projections from the SN to PnC, and indirect projections through the PPTg. Finally, we also measured levels of excitatory amino acid neurotransmitters in the PnC following lesion of the SN, and found that they change following an ipsi/contralateral pattern. Taken together, our results identify nigrofugal efferents onto the primary ASR circuit that may modulate motor responses.


Assuntos
Vias Auditivas/fisiologia , Movimento/fisiologia , Reflexo de Sobressalto/fisiologia , Formação Reticular/fisiologia , Substância Negra/fisiologia , Estimulação Acústica , Animais , Vias Auditivas/efeitos dos fármacos , Biotina/análogos & derivados , Biotina/metabolismo , Conectoma , Dextranos/metabolismo , Lateralidade Funcional/efeitos dos fármacos , Masculino , NADPH Desidrogenase/metabolismo , Neurotoxinas/toxicidade , Neurotransmissores/metabolismo , Oxidopamina/toxicidade , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Reflexo de Sobressalto/efeitos dos fármacos , Formação Reticular/efeitos dos fármacos , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Estilbamidinas/metabolismo , Substância Negra/lesões , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA