RESUMO
Gel polymer electrolytes (GPEs) present a promising alternative to standard liquid electrolytes (LE) for Lithium-ion Batteries (LIBs) and Lithium Metal Batteries bridging the advantages of both liquid and solid polymer electrolytes. However, their cycle life still lags behind that of standard LIBs, and their degradation mechanisms remain poorly understood. A significant challenge is the need for specific diagnostic protocols to systematically study the degradation mechanisms of GPE-based cells. Challenges include the separation of cell components and effective washing, as well as the study of the solid electrolyte interfaces, all complicated by the semi-solid nature of GPEs. This paper provides a brief review of existing literature and proposes a comprehensive set of diagnostic tools for dismantling and evaluating the degradation of GPE-based LIBs. Finally, these methods and recommendations are applied to LiNi0.5Mn1.5O4 (LNMO)-graphite cells, revealing electrolyte oxidation as a major source of cell degradation.
RESUMO
Zeolitic imidazolate framework (ZIF) microporous materials have already been employed in many fields of energetic and environmental interest since the last decade. The commercial scale production of some of these materials makes them more accessible for their implementation in industrial processes; however, their massive synthesis may entail modifications to the preparation protocols, which may result in a loss in the optimization of this process and a drop in the material's quality. This fact may have implications for the performance of these materials during their lifetime, especially when they are used in applications such as energy dissipation, in which they are subjected to several operating cycles under high pressures. This study focuses on ZIF-67, a material that has demonstrated in the past its ability to dissipate energy through the water intrusion-extrusion process under high pressure. Two ZIF-67 samples were synthesized using different protocols, and 2 batches of different qualities (labelled as high quality (HQ) and low quality (LQ)) were obtained and analysed by water porosimetry to study their performance in the intrusion-extrusion process. Unexpectedly, minor structural differences, which are typically neglected especially under production conditions, had a dramatic effect on their performance. The results presented in this study reiterate the importance of quality control with respect to reproducibility of experimental results. In a broader perspective, they are critical to the technology transfer from academia to industry.
RESUMO
Sodium-air batteries (SABs) are receiving considerable attention for the development of next generation battery alternatives due to their high theoretical energy density (up to 1105 W h kg-1). However, most of the studies on this technology are still based on organic solvents; in particular, diglyme, which is highly flammable and toxic for the unborn child. To overcome these safety issues, this research investigates the first use of a branched ether solvent 1,2,3-trimethoxypropane (TMP) as an alternative electrolyte to diglyme for SABs. Through this work, the reactivity of the central tertiary carbon in TMP towards bare sodium metal was identified, while the addition of N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C4mpyr][TFSI]) as a co-solvent proved to be an effective strategy to limit the reactivity. Moreover, a Na-ß-alumina disk was employed for anode protection, to separate the TMP-based electrolyte from the sodium metal. The new cell design resulted in improved cell performance: discharge capacities of up to 1.92 and 2.31 mA h cm-2 were achieved for the 16.6 mol% NaTFSI in TMP and 16.6 mol% NaTFSI in TMP/[C4mpyr][TFSI] compositions, respectively. By means of SEM, Raman and 23Na NMR techniques, NaO2 cubes were identified to be the major discharge product for both electrolyte compositions. Moreover, the hybrid electrolyte was shown to hinder the formation of side-products during discharge - the ratio of NaO2 to side-products in the hybrid electrolyte was 2.4 compared with 0.8 for the TMP-based electrolyte - and a different charge mechanism for the dissolution of NaO2 cubes for each electrolyte was observed. The findings of this work demonstrate the high potential of TMP as a base solvent for SABs, and the importance of careful electrolyte composition design in order to step towards greener and less toxic batteries.
RESUMO
Hybrid solid electrolytes (HSEs), namely mixtures of polymer and inorganic electrolytes, have supposedly improved properties with respect to inorganic and polymer electrolytes. In practice, HSEs often show ionic conductivity below expectations, as the high interface resistance limits the contribution of inorganic electrolyte particles to the charge transport process. In this study, the transport properties of a series of HSEs containing Li(1+ x ) Alx Ti(2- x ) (PO4 )3 (LATP) as Li+ -conducting filler are analyzed. The occurrence of Li+ exchange across the two phases is proved by isotope exchange experiment, coupled with 6 Li/7 Li nuclear magnetic resonance (NMR), and by 2D 6 Li exchange spectroscopy (EXSY), which gives a time constant for Li+ exchange of about 50 ms at 60 °C. Electrochemical impedance spectroscopy (EIS) distinguishes a short-range and a long-range conductivity, the latter decreasing with LATP concentration. LATP particles contribute to the overall conductivity only at high temperatures and at high LATP concentrations. Pulsed field gradient (PFG)-NMR suggests a selective decrease of the anions' diffusivity at high temperatures, translating into a marginal increase of the Li+ transference number. Although the transport properties are only marginally affected, addition of moderate amounts of LATP to polymer electrolytes enhances their mechanical properties, thus improving the plating/stripping performance and processability.
RESUMO
Li metal secondary batteries known for their high energy and power density are the much-awaited energy storage systems owing to the high specific capacity of Li metal. However, due to the instability of Li metal with common Li-ion battery electrolytes, a combination with a polymer electrolyte seems to be an effective strategy to alleviate the safety issues of employing Li metal and provide design conformity to the system. Current trends show improvements in different aspects, such as improving ionic conductivity, single-ion conductivity, mechanical stability, and electrochemical stability. A combination of all these properties has been a bottleneck for the development of polymer electrolytes for safe and efficient operation of all solid-state batteries. Herein, a multifunctional polysalt has been synthesized from green and sustainable materials, namely, ethyl cellulose, plasticized with adiponitrile, that contributes to meeting the critical properties enabling high compatibility with Li metal and a quasi-single-ion-conducting property while simultaneously acting as a matrix/filler for efficient operation of the cells. This multifunctional polymer matrix inhibits further decomposition of nitrile-based plasticizers on Li metal anodes with the formation of a favorable Li metal anode interface, thus enabling the utilization of high-voltage stable nitrile-based plasticizers (4.2 V) to be implemented as an electrolyte component for realization of high-voltage Li metal anode polymer batteries.
RESUMO
Model validation of a well-known class of solid polymer electrolyte (SPE) is utilized to predict the ionic structure and ion dynamics of alternative alkali metal ions, leading to advancements in Na-, K-, and Cs-based SPEs for solid-state alkali metal batteries. A comprehensive study based on molecular dynamics (MD) is conducted to simulate ion coordination and the ion transport properties of poly(ethylene oxide) (PEO) with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt across various LiTFSI concentrations. Through validation of the MD simulation results with experimental techniques, we gain a deeper understanding of the ionic structure and dynamics in the PEO/LiTFSI system. This computational approach is then extended to predict ion coordination and transport properties of alternative alkali metal ions. The ionic structure in PEO/LiTFSI is significantly influenced by the LiTFSI concentration, resulting in different lithium-ion transport mechanisms for highly concentrated or diluted systems. Substituting lithium with sodium, potassium, and cesium reveals a weaker cation-PEO coordination for the larger cesium-ion. However, sodium-ion based SPEs exhibit the highest cation transport number, indicating the crucial interplay between salt dissociation and cation-PEO coordination for achieving optimal performance in alkali metal SPEs.
RESUMO
An operando dual-edge X-ray absorption spectroscopy on both transition-metal ordered and disordered LiNi0.5Mn1.5O4 during electrochemical delithiation and lithiation was carried out. The large data set was analyzed via a chemometric approach to gain reliable insights into the redox activity and the local structural changes of Ni and Mn throughout the electrochemical charge and discharge reaction. Our findings confirm that redox activity relies predominantly on the Ni2+/4+ redox couple involving a transient Ni3+ phase. Interestingly, a reversible minority contribution of Mn3+/4+ is also evinced in both LNMO materials. While the reaction steps and involved reactants of both ordered and disordered LNMO materials generally coincide, we highlight differences in terms of reaction dynamics as well as in local structural evolution induced by the TM ordering.
RESUMO
A series of hybrid electrolytes composed of diglyme and ionic liquids (ILs) have been investigated for Na-O2 batteries, as a strategy to control the growth and purity of the discharge products during battery operation. The dependence of chemical composition of the ILs on the size, purity, and distribution of the discharge products has been evaluated using a wide range of experimental and spectroscopic techniques. The morphology and composition of the discharge products found in the Na-O2 cells have a complex dependence on the physicochemical properties of the electrolyte as well as the speciation of the Na+ and superoxide radical anion. All of these factors control the nucleation and growth phenomena as well as electrolyte stability. Smaller discharge particle sizes and largely homogeneous (2.7 ± 0.5 µm) sodium superoxide (NaO2) crystals with only 9% of side products were found in the hybrid electrolyte containing the pyrrolidinium IL with a linear alkyl chain. The long-term cyclability of Na-O2 batteries with high Coulombic efficiency (>90%) was obtained for this electrolyte with fewer side products (20 cycles at 0.5 mA h cm-2). In contrast, rapid failure was observed with the use of the phosphonium-based electrolyte, which strongly stabilizes the superoxide anion. A high discharge capacity (4.46 mA h cm-2) was obtained for the hybrid electrolyte containing the pyrrolidinium-based IL bearing a linear alkyl chain with a slightly lower value (3.11 mA h cm-2) being obtained when the hybrid electrolyte contained similar pyrrolidinium-based IL bearing an alkoxy chain.
RESUMO
A series of electrospun binder-free carbon nanofiber (CNF) mats have been studied as air cathodes for Na-oxygen batteries using a pyrrolidinium-based electrolyte and compared with the commercial air cathode Toray 090. A tenfold increase in the discharge capacity is attained when using CNFs in comparison with Toray 090, affording a discharge capacity of 1.53â mAh cm-2 at a high discharge rate of 0.63â mA cm-2 . The good specific discharge and charge capacities of these CNFs are determined by the void space and the highly accessible surface of the carbon fiber. Furthermore, a threefold increase has been attained in terms of specific capacity by controlling the flooding of the air cathode and hence the location of the three-phase boundary within the CNF mat. The enhancement in performance has been correlated to the morphology, composition, distribution, and location of the discharge products. Sodium superoxide and peroxide were identified as the discharge products and, more importantly, the common side reaction discharge products, which are known to be detrimental to battery performance (including sodium fluoride, sodium hydroxide, and formate), were not observed, exemplifying the stability of the pyrrolidinium-based electrolyte and these binder-free CNF air cathodes.
RESUMO
The complete description of defective structures and their impact on materials behavior is a great challenge due to difficulties associated with their reliable characterization in the nanoscale. In this paper, density functional theory (DFT) calculations are used to elucidate the solid-state nuclear magnetic resonance (NMR) spectra of Li2MnO3 which, combined with X-ray diffraction (XRD), provide a full description of disorder in this compound. While XRD allows accurate quantification of planar defects, the use of solid-state NMR reveals limited vacancy concentrations that were undetected by XRD as NMR is highly sensitive to the atomic local environments. The combination of these methods is here proved highly effective in overcoming the challenges of describing in great detail limited concentrations of disorder in transition metal oxides, providing information about structural variables that are essential to their application.
RESUMO
All-solid-state batteries including a garnet ceramic as electrolyte are potential candidates to replace the currently used Li-ion technology, as they offer safer operation and higher energy storage performances. However, the development of ceramic electrolyte batteries faces several challenges at the electrode/electrolyte interfaces, which need to withstand high current densities to enable competing C-rates. In this work, we investigate the limits of the anode/electrolyte interface in a full cell that includes a Li-metal anode, LiFePO4 cathode, and garnet ceramic electrolyte. The addition of a liquid interfacial layer between the cathode and the ceramic electrolyte is found to be a prerequisite to achieve low interfacial resistance and to enable full use of the active material contained in the porous electrode. Reproducible and constant discharge capacities are extracted from the cathode active material during the first 20 cycles, revealing high efficiency of the garnet as electrolyte and the interfaces, but prolonged cycling leads to abrupt cell failure. By using a combination of structural and chemical characterization techniques, such as SEM and solid-state NMR, as well as electrochemical and impedance spectroscopy, it is demonstrated that a sudden impedance drop occurs in the cell due to the formation of metallic Li and its propagation within the ceramic electrolyte. This degradation process is originated at the interface between the Li-metal anode and the ceramic electrolyte layer and leads to electromechanical failure and cell short-circuit. Improvement of the performances is observed when cycling the full cell at 55 °C, as the Li-metal softening favors the interfacial contact. Various degradation mechanisms are proposed to explain this behavior.
RESUMO
Alzheimer's disease is characterized by deposition of the amyloid ß-peptide (Aß) in brain tissue of affected individuals. In recent years, many potential lead structures have been suggested that can potentially be used for diagnosis and therapy. However, the mode of action of these compounds is so far not understood. Among these small molecules, the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide received a lot of attention. In this manuscript, we characterize the interaction between the monomeric Aß peptide and the NSAID sulindac sulfide. We find that sulindac sulfide efficiently depletes the pool of toxic oligomers by enhancing the rate of fibril formation. In vitro, sulindac sulfide forms colloidal particles which catalyze the formation of fibrils. Aggregation is immediate, presumably by perturbing the supersaturated Aß solution. We find that sulindac sulfide induced Aß aggregates are structurally homogeneous. The C-terminal part of the peptide adopts a ß-sheet structure, whereas the N-terminus is disordered. The salt bridge between D23 and K28 is present, similar as in wild type fibril structures. (13)C-(19)F transferred echo double resonance experiments suggest that sulindac sulfide colocalizes with the Aß peptide in the aggregate.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/fisiologia , Sulindaco/análogos & derivados , Sequência de Aminoácidos , Peptídeos beta-Amiloides/toxicidade , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/toxicidade , Agregados Proteicos/efeitos dos fármacos , Sulindaco/farmacologiaRESUMO
Lithium-based rechargeable batteries offer superior specific energy and power, and have enabled exponential growth in industries focused on small electronic devices. However, further increases in energy density, for example for electric transportation, face the challenge of harnessing the lithium metal as negative electrode instead of limited-capacity graphite and its heavy copper current collector. All-solid-state batteries utilize solid polymer electrolytes (SPEs) to overcome the safety issues of liquid electrolytes. We demonstrate an all-solid-state lithium-ion battery by using plasticized poly(ethylene oxide)-based SPEs comprising anions grafted or co-grafted onto ceramic nanoparticles. This new approach using grafted ceramic nanoparticles enables the development of a new generation of nanohybrid polymer electrolytes with high ionic conductivity as well as high electrochemical and mechanical stability, enabling Li-ion batteries with long cycle life.
RESUMO
Alzheimer disease is the most severe neurodegenerative disease worldwide. In the past years, a plethora of small molecules interfering with amyloid-ß (Aß) aggregation has been reported. However, their mode of interaction with amyloid fibers is not understood. Non-steroidal anti-inflammatory drugs (NSAIDs) are known γ-secretase modulators; they influence Aß populations. It has been suggested that NSAIDs are pleiotrophic and can interact with more than one pathomechanism. Here we present a magic angle spinning solid-state NMR study demonstrating that the NSAID sulindac sulfide interacts specifically with Alzheimer disease Aß fibrils. We find that sulindac sulfide does not induce drastic architectural changes in the fibrillar structure but intercalates between the two ß-strands of the amyloid fibril and binds to hydrophobic cavities, which are found consistently in all analyzed structures. The characteristic Asp(23)-Lys(28) salt bridge is not affected upon interacting with sulindac sulfide. The primary binding site is located in the vicinity of residue Gly(33), a residue involved in Met(35) oxidation. The results presented here will assist the search for pharmacologically active molecules that can potentially be employed as lead structures to guide the design of small molecules for the treatment of Alzheimer disease.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/química , Sulindaco/análogos & derivados , Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios não Esteroides , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Ligação Proteica , Estrutura Secundária de Proteína , Sulindaco/química , Sulindaco/uso terapêuticoRESUMO
Dynamic Nuclear Polarization solid-state NMR holds the potential to enable a dramatic increase in sensitivity by exploiting the large magnetic moment of the electron. However, applications to biological solids are hampered in uniformly isotopically enriched biomacromolecules due to line broadening which yields a limited spectral resolution at cryogenic temperatures. We show here that high magnetic fields allow to overcome the broadening of resonance lines often experienced at liquid nitrogen temperatures. For a fibril sample of the Alzheimer's disease ß-amyloid peptide, we find similar line widths at low temperature and at room temperature. The presented results open new perspectives for structural investigations in the solid-state.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Temperatura Baixa , Ressonância Magnética Nuclear Biomolecular , Peptídeos beta-Amiloides/ultraestrutura , HumanosRESUMO
The green tea compound epigallocatechin-3-gallate (EGCG) inhibits Alzheimer's disease ß-amyloid peptide (Aß) neurotoxicity. Solution-state NMR allows probing initial EGCG-Aß interactions. We show that EGCG-induced Aß oligomers adopt a well-defined structure and are amenable for magic angle spinning solid-state NMR investigations. We find that EGCG interferes with the aromatic hydrophobic core of Aß. The C-terminal part of the Aß peptide (residues 22-39) adopts a ß-sheet conformation, whereas the N-terminus (residues 1-20) is unstructured. The characteristic salt bridge involving residues D23 and K28 is present in the structure of these oligomeric Aß aggregates as well. The structural analysis of small-molecule-induced amyloid aggregates will open new perspectives for Alzheimer's disease drug development.
Assuntos
Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/química , Catequina/análogos & derivados , Fármacos Neuroprotetores/efeitos adversos , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Catequina/efeitos adversos , Catequina/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Fármacos Neuroprotetores/metabolismo , Conformação Proteica , Desnaturação Proteica , Multimerização ProteicaRESUMO
Several lines of evidence indicate that prefibrillar assemblies of amyloid-ß (Aß) polypeptides, such as soluble oligomers or protofibrils, rather than mature, end-stage amyloid fibrils cause neuronal dysfunction and memory impairment in Alzheimer's disease. These findings suggest that reducing the prevalence of transient intermediates by small molecule-mediated stimulation of amyloid polymerization might decrease toxicity. Here we demonstrate the acceleration of Aß fibrillogenesis through the action of the orcein-related small molecule O4, which directly binds to hydrophobic amino acid residues in Aß peptides and stabilizes the self-assembly of seeding-competent, ß-sheet-rich protofibrils and fibrils. Notably, the O4-mediated acceleration of amyloid fibril formation efficiently decreases the concentration of small, toxic Aß oligomers in complex, heterogeneous aggregation reactions. In addition, O4 treatment suppresses inhibition of long-term potentiation by Aß oligomers in hippocampal brain slices. These results support the hypothesis that small, diffusible prefibrillar amyloid species rather than mature fibrillar aggregates are toxic for mammalian cells.
Assuntos
Amiloide/química , Oxazinas/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Amiloide/toxicidade , Amiloide/ultraestrutura , Linhagem Celular Tumoral , Hipocampo/química , Hipocampo/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/ultraestrutura , Estrutura Secundária de Proteína , Transmissão SinápticaRESUMO
The structures of oligomeric intermediate states in the aggregation process of Alzheimer's disease ß-amyloid peptides have been the subject of debate for many years. Bacterial inclusion bodies contain large amounts of small heat shock proteins (sHSPs), which are highly homologous to those found in the plaques of the brains of Alzheimer's disease patients. sHSPs break down amyloid fibril structure in vitro and induce oligomeric assemblies. Prokaryotic protein overexpression thus mimics the conditions encountered in the cell under stress and allows the structures of Aß aggregation intermediate states to be investigated under native-like conditions, which is not otherwise technically possible. We show that IB40/IB42 fulfil all the requirements to be classified as amyloids: they seed fibril growth, are Congo red positive and show characteristic ß-sheet-rich CD spectra. However, IB40 and IB42 are much less stable than fibrils formed in vitro and contain significant amounts of non-ß-sheet regions, as seen from FTIR studies. Quantitative analyses of solution-state NMR H/D exchange rates show that the hydrophobic cores involving residues V18-F19-F20 adopt ß-sheet conformations, whereas the C termini adopt α-helical coiled-coil structures. In the past, an α-helical intermediate-state structure has been postulated, but could not be verified experimentally. In agreement with the current literature, in which Aß oligomers are described as the most toxic state of the peptides, we find that IB42 contains SDS-resistant oligomers that are more neurotoxic than Aß42 fibrils. E. coli inclusion bodies formed by the Alzheimer's disease ß-amyloid peptides Aß40 and Aß42 thus behave structurally like amyloid aggregation intermediate states and open the possibility of studying amyloids in a native-like, cellular environment.