Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1241019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693350

RESUMO

This study explored changes in brain serotonin content and activity together with hypothalamic neuropeptide mRNA abundance around feeding time in rainbow trout, as well as the effect of one-day fasting. Groups of trout fed at two (ZT2) and six (ZT6) hours after lights on were sampled from 90 minutes before to 240 minutes after feeding, while additional groups of non-fed trout were also included in the study. Changes in brain amine and metabolite contents were measured in hindbrain, diencephalon and telencephalon, while in the diencephalon the mRNA abundance of tryptophan hydroxylase (tph1, tph2), serotonin receptors (5htr1a, 5htr1b and 5htr2c) and several neuropeptides (npy, agrp1, cartpt, pomca1, crfb) involved in the control of food intake were also assessed. The results showed changes in the hypothalamic neuropeptides that were consistent with the expected role for each in the regulation of food intake in rainbow trout. Serotonergic activity increased rapidly at the time of food intake in the diencephalon and hindbrain and remained high for much of the postprandial period. This increase in serotonin abundance was concomitant with elevated levels of pomca1 mRNA in the diencephalon, suggesting that serotonin might act on brain neuropeptides to promote a satiety profile. Furthermore, serotonin synthesis and neuronal activity appear to increase already before the time of feeding, suggesting additional functions for this amine before and during food intake. Exploration of serotonin receptors in the diencephalon revealed only small changes for gene expression of 5htr1b and 5htr2c receptors during the postprandial phase. Therefore, the results suggest that serotonin may play a relevant role in the regulation of feeding behavior in rainbow trout during periprandial time, but a better understanding of its interaction with brain centers involved in receiving and processing food-related signals is still needed.


Assuntos
Neuropeptídeos , Oncorhynchus mykiss , Animais , Serotonina , Neuropeptídeos/genética , Encéfalo , Aminas , Ingestão de Alimentos
2.
Gen Comp Endocrinol ; 304: 113716, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33484717

RESUMO

The incretin, glucagon-like peptide-1 (GLP-1) is a major player in the gut-brain axis regulation of energy balance and in fish it seems to exert a negative influence on food intake. In this study, we investigated the role of the brain serotonergic system in the effects promoted by a peripheral GLP-1 injection on food intake in rainbow trout (Oncorhynchus mykiss). For this, in a first experiment the incretin was intraperitoneally injected (100 ng/g body weight) alone or in combination with a 5HT2C receptor antagonist (SB 242084, 1 µg/g body weight) and food intake was measured 30, 90, and 180 min later. In a second experiment, we studied the effect of these treatments on mRNA abundance of hypothalamic neuropeptides that control food intake. In addition, the effect of GLP-1 on serotonin metabolism was assessed in hindbrain and hypothalamus. Our results show that GLP-1 induced a significant food intake inhibition, which agreed with the increased expression of anorexigenic neuropeptides pomc and cart in the hypothalamus. Furthermore, GLP-1 stimulated the synthesis of serotonin in the hypothalamus, which might be indicative of a higher use of the neurotransmitter. The effects of GLP-1 on food intake were partially reversed when a serotonin receptor antagonist, SB 242084, was previously administered to trout. This antagonist also reversed the stimulatory effect of the hormone in hypothalamic pomca1 mRNA abundance. We conclude that hypothalamic serotonergic pathways are essential for mediating the effects of GLP-1 on food intake in rainbow trout. In addition, the 5HT2C receptor subtype seems to have a prominent role in the inhibition of food intake induced by GLP-1 in this species.


Assuntos
Oncorhynchus mykiss , Animais , Ingestão de Alimentos , Peptídeo 1 Semelhante ao Glucagon , Hipotálamo , Serotonina
3.
Physiol Behav ; 209: 112617, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31319109

RESUMO

To assess the hypothesis that Na+/K+-ATPase (NKA) is involved in the central regulation of food intake in fish, we observed in a first experiment with rainbow trout (Oncorhynchus mykiss) that intracerebroventricular (ICV) treatment with ouabain decreased food intake. We hypothesized that this effect relates to modulation of glucosensing mechanisms in brain areas (hypothalamus, hindbrain, and telencephalon) involved in food intake control. Therefore, we evaluated in a second experiment, the effect of ICV administration of ouabain, in the absence or in the presence of glucose, on NKA activity, mRNA abundance of different NKA subunits, parameters related to glucosensing, transcription factors, and appetite-related neuropeptides in brain areas involved in the control of food intake. NKA activity and mRNA abundance of nkaα1a and nkaα1c in brain were inhibited by ouabain treatment and partially by glucose. The anorectic effect of ouabain is opposed to the orexigenic effect reported in mammals. The difference might relate to the activity of glucosensing as well as downstream mechanisms involved in food intake regulation. Ouabain inhibited glucosensing mechanisms, which were activated by glucose in hypothalamus and telencephalon. Transcription factors and neuropeptides displayed responses comparable to those elicited by glucose when ouabain was administered alone, but not when glucose and ouabain were administered simultaneously. Ouabain might therefore affect other processes, besides glucosensing mechanisms, generating changes in membrane potential and/or intracellular pathways finally modulating transcription factors and neuropeptide mRNA abundance leading to modified food intake.


Assuntos
Química Encefálica/fisiologia , Ingestão de Alimentos/fisiologia , Glucose/metabolismo , Oncorhynchus mykiss/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Química Encefálica/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/enzimologia , Hipotálamo/metabolismo , Infusões Intraventriculares , Neuropeptídeos/metabolismo , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Telencéfalo/efeitos dos fármacos , Telencéfalo/enzimologia , Telencéfalo/metabolismo
4.
PLoS One ; 14(7): e0219153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31276539

RESUMO

In fish, the circadian clock represents a key regulator of many aspects of biology and is controlled by combinations of abiotic and biotic factors. These environmental factors are frequently manipulated in fish farms as part of strategies designed to maximize productivity. The flatfish turbot, Scophthalmus maximus, represents one of the most important species within the aquaculture sector in Asia and Europe. Despite the strategic importance of this species, the function and regulation of the turbot circadian system remains poorly understood. Here, we have characterized the core circadian clock genes, clock1, per1, per2 and cry1 in turbot and have studied their daily expression in various tissues under a range of lighting conditions and feeding regimes. We have also explored the influence of light and feeding time on locomotor activity. Rhythmic expression of the four core clock genes was observed in all tissues studied under light dark (LD) cycle conditions. Rhythmicity of clock gene expression persisted upon transfer to artificial free running, constant conditions confirming their endogenous circadian clock control. Furthermore, turbot showed daily cycles of locomotor activity and food anticipatory activity (FAA) under LD and scheduled-feeding, with the activity phase as well as FAA coinciding with and being dependent upon exposure to light. Thus, while FAA was absent under constant dark (DD) conditions, it was still detected in constant light (LL). In contrast, general locomotor activity was arrhythmic in both constant darkness and constant light, pointing to a major contribution of light, in concert with the circadian clock, in timing locomotor activity in this species. Our data represents an important contribution to our understanding of the circadian timing system in the turbot and thereby the optimization of rearing protocols and the improvement of the well-being of turbot within fish farming environments.


Assuntos
Proteínas CLOCK/genética , Clonagem Molecular/métodos , Linguados/fisiologia , Animais , Comportamento Animal , Relógios Circadianos , Ritmo Circadiano , Comportamento Alimentar , Proteínas de Peixes/genética , Linguados/genética , Regulação da Expressão Gênica , Fotoperíodo , Distribuição Tecidual
5.
Front Physiol ; 10: 611, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164837

RESUMO

In vertebrates stress negatively affects body homeostasis and triggers a battery of metabolic responses, with liver playing a key role. This organ responds with altered metabolism, leading the animal to cope with the stress situation, which involves carbohydrate and lipid mobilization. However, metabolism among other physiological functions is under circadian control within the liver. Then, metabolic homeostasis at system level involves circadian timing systems within tissues and cells, and collaborate with each other. During chronic stress, cortisol maintains the liver metabolic response by modulating carbohydrate- and lipid-related metabolism. Stress also disrupts the circadian oscillator within the liver in mammals, whereas little information is available in other vertebrates, such as fish. To raise the complexity of this process, other candidates may mediate in such effect of stress. In fact, sirtuin1, a link between cellular sensing of energy status and circadian clocks, participates in the response to stress in mammals, but no information is available in fish. Considering the role played by liver in providing energy for the animal to deal with an adverse situation, and the existence of a circadian oscillator within this tissue, jeopardized liver circadian physiology during stress exposure might be expected. Whether the physiological response to stress is a well conserved process through the phylogeny and the mechanisms involved in such response is a question that remains to be elucidated. Then, we provide information at this respect in mammals and show comparable results in rainbow trout as fish animal model. Similar to that in mammals, stress triggers a series of responses in fish that leads the animal to cope with the adverse situation. Stress influences liver physiology in fish, affecting carbohydrate and lipid metabolism-related parameters, and the circadian oscillator as well. In a similar way than that of mammals different mediators participate in the response of liver circadian physiology to stress in fish. Among them, we confirm for the teleost rainbow trout a role of nuclear receptors (rev-erbß), cortisol, and sirt1. However, further research is needed to evaluate the independent effect of each one, or the existence of any interaction among them.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31152913

RESUMO

Stress negatively affects a wide range of physiological and behavioural functions (circadian physiology and food intake, among others), thus compromising animal welfare. Cortisol mediates the effect of stress on food intake, but other mediators (such as sirtuins) may participate in that related to circadian physiology. We evaluated 1) the effect of stress on the day-night variation of hypothalamic clock genes and food intake regulators, 2) changes of mRNA abundance in cortisol biosynthesis at the head kidney, and 3) changes of glucocorticoid receptors in both tissues of rainbow trout, together with the involvement of SIRT1 in such effect. Trout receiving or not SIRT1 inhibitor (EX527) and subjected or not to stress by high stocking density (72 h), were sampled at day- (ZT10) and night-time (ZT18). Our results indicate that SIRT1 mediates the effect of stress on mRNA abundance of clock genes in trout hypothalamus, but it also influences those changes occurring on food intake-related peptides. High stocking density inhibits clock genes expression, but enhances that of food intake-related peptides. EX527 treatment prevents stress-related changes observed in clock genes, thus evidencing a key role played by SIRT1 in mediating this effect on trout circadian oscillators. On the other hand, EX527 treatment partially prevents changes of food intake-related peptides, indicating that an interaction between SIRT1 and other mediators (such as cortisol) exists during response to stress. In support of that, our results reveal that SIRT1 influences cortisol biosynthesis during stress. Whatever the case is, further research will help understanding the underlying mechanisms involved.


Assuntos
Ingestão de Alimentos/genética , Hipotálamo/metabolismo , Oncorhynchus mykiss/genética , Sirtuína 1/genética , Animais , Regulação do Apetite , Regulação da Expressão Gênica/genética , Hidrocortisona/metabolismo , RNA Mensageiro/genética , Estresse Fisiológico/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-30225518

RESUMO

We aimed to obtain information regarding mechanisms that link glucose- and fatty acid-sensing systems to expression of neuropeptides that regulate food intake in the fish brain. We assessed the relative expression and protein levels of the transcription factors BSX, ChREBP, FoxO1, and CREB in the hypothalamus of rainbow trout (Oncorhynchus mykiss) treated for 6 h with either glucose or oleate in vivo (intra-cerebroventricular treatment with 1 µl 100 g- 1 body weight of 40 µg glucose or 1 µmol oleate) or in vitro (incubation with 4-8 mM glucose or 100-500 µM oleate). BSX levels decreased after oleate treatment for mRNA (10% in vitro and 47% in vivo) and protein (25%), while minor changes occurred after glucose treatment. CREB values generally decreased after glucose or oleate treatment for mRNA (50% in vivo) as well as the phosphorylation status of protein (80%). Foxo1 mRNA levels increased in vivo with glucose (129%) and decreased in vivo with oleate (60%), and protein phosphorylation status increased with glucose (in vivo) and oleate. mRNA values of chrebpα decreased in response to glucose and oleate, while protein levels decreased with oleate and increased with glucose. The results support the association of several transcription factors with metabolic control of food intake in fish.


Assuntos
Proteínas de Peixes/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Ácido Oleico/metabolismo , Oncorhynchus mykiss/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ingestão de Alimentos/fisiologia , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , Distribuição Aleatória
8.
Chronobiol Int ; 35(8): 1122-1141, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29737878

RESUMO

Stress is conditioning animal welfare by negatively affecting a wide range of physiological and behavioral functions. This may be applied to circadian physiology and food intake. Cortisol, the stress-related hormone, may mediate such effect of stress, but other indirect mediators might be considered, such as sirtuin1. Then, either the independent modulatory effect or the existence of any interaction between mediators may be responsible. The circadian system is the main modulator of several integrative mechanisms at both central and peripheral levels that are rhythmically presented, thus influencing different processes such as food intake. In this way, food intake is controlled by the circadian system, as demonstrated by the persistence of such rhythms of food intake in the absence of environmental external cues. Our study aimed to evaluate the daily profile of hypothalamic mRNA abundance of circadian clock genes (clock1a, bmal1, per1 and rev-erbß-like), and food intake regulators (crf, pomc-a1, cart, and npy) in rainbow trout (Oncorhynchus mykiss), the impact of stress on such rhythms, and the involvement of cortisol and sirtuin1 as mediators. Four cohorts of trout were subjected to 1) normal stocking density (control group), 2) high stocking density for 72 hours (stress group), 3) normal stocking density and implanted with mifepristone, a glucocorticoid receptors antagonist, and 4) mifepristone administered and stressed for 72 hours. Fish from each group were sampled every 4-h along the 24-h LD cycle, and cortisol, glucose and lactate plasma levels were evaluated. Hypothalamic mRNA abundance of clock genes, food intake regulators, glucocorticoid receptors and sirtuin1 were qPCR assayed. Our results reveal the impact of stress on most of the genes assayed, but different mechanisms appear to be involved. The rhythm of clock genes displayed decreased amplitude and averaged levels in stressed trout, with no changes of the acrophase being observed. This effect was not prevented by mifepristone. On the contrary, the effect of stress on the daily profile of crf, pomc-a1, and npy was totally prevented by mifepristone administration. Accordingly, cortisol appears to mainly mediate the effect of stress on food intake regulators through binding to specific glucocorticoid receptors within trout hypothalamus, whereas sirtuin1 is apparently mediating such effects on the circadian system in the same brain region. Further research must be performed to clarify those mechanisms through which stress influences food intake and the circadian oscillator within the same brain region, hypothalamus, in rainbow trout, and the interaction among them all.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , Ingestão de Alimentos , Proteínas de Peixes/metabolismo , Hidrocortisona/metabolismo , Hipotálamo/metabolismo , Oncorhynchus mykiss/metabolismo , Sirtuína 1/metabolismo , Estresse Psicológico/metabolismo , Animais , Comportamento Animal , Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ingestão de Alimentos/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Hipotálamo/fisiopatologia , Oncorhynchus mykiss/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Fatores de Tempo
9.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R201-R215, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046316

RESUMO

To assess the hypothesis of central amino acid-sensing systems involved in the control of food intake in fish, we carried out two experiments in rainbow trout. In the first one, we injected intracerebroventricularly two different branched-chain amino acids (BCAAs), leucine and valine, and assessed food intake up to 48 h later. Leucine decreased and valine increased food intake. In a second experiment, 6 h after similar intracerebroventricular treatment we determined changes in parameters related to putative amino acid-sensing systems. Different areas of rainbow trout brain present amino acid-sensing systems responding to leucine (hypothalamus and telencephalon) and valine (telencephalon), while other areas (midbrain and hindbrain) do not respond to these treatments. The decreased food intake observed in fish treated intracerebroventricularly with leucine could relate to changes in mRNA abundance of hypothalamic neuropeptides [proopiomelanocortin (POMC), cocaine- and amphetamine-related transcript (CART), neuropeptide Y (NPY), and agouti-related peptide (AgRP)]. These in turn could relate to amino acid-sensing systems present in the same area, related to BCAA and glutamine metabolism, as well as mechanistic target of rapamycin (mTOR), taste receptors, and general control nonderepressible 2 (GCN2) kinase signaling. The treatment with valine did not affect amino acid-sensing parameters in the hypothalamus. These responses are comparable to those characterized in mammals. However, clear differences arise when comparing rainbow trout and mammals, in particular with respect to the clear orexigenic effect of valine, which could relate to the finding that valine partially stimulated two amino acid-sensing systems in the telencephalon. Another novel result is the clear effect of leucine on telencephalon, in which amino acid-sensing systems, but not neuropeptides, were activated as in the hypothalamus.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Encéfalo/metabolismo , Ingestão de Alimentos , Comportamento Alimentar , Oncorhynchus mykiss/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácidos de Cadeia Ramificada/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação Enzimológica da Expressão Gênica , Glutamina/metabolismo , Injeções Intraventriculares , Leucina/administração & dosagem , Leucina/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Oncorhynchus mykiss/genética , Fosforilação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Valina/administração & dosagem , Valina/metabolismo
10.
J Exp Biol ; 220(Pt 23): 4410-4417, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970346

RESUMO

There is no available information about mechanisms linking glucosensing activation in fish and changes in the expression of brain neuropeptides controlling food intake. Therefore, we assessed in rainbow trout hypothalamus the effects of raised levels of glucose on the levels and phosphorylation status of two transcription factors, FoxO1 and CREB, possibly involved in linking these processes. We also aimed to assess the changes in the levels and phosphorylation status of two proteins possibly involved in the modulation of these transcription factors: Akt and AMPK. Therefore, in pooled preparations of hypothalamus incubated for 3 and 6 h in the presence of 2, 4 or 8 mmol l-1 d-glucose, we evaluated the response of parameters related to glucosensing mechanisms, neuropeptide expression and levels and phosphorylation status of the proteins of interest. The activation of hypothalamic glucosensing systems and the concomitant enhanced anorectic potential occurred in parallel with activation of Akt and inhibition of AMPK. The changes in these proteins relate to neuropeptide expression through changes in the level and phosphorylation status of transcription factors under their control, such as CREB and FoxO1, which displayed inhibitory (CREB) or activatory (FoxO1) responses to increased glucose.


Assuntos
Proteínas de Peixes/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Oncorhynchus mykiss/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fosforilação
11.
Chronobiol Int ; 34(9): 1259-1272, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28933632

RESUMO

Several reports support the existence of multiple peripheral oscillators in fish, which may be able to modulate the rhythmic functions developed by those tissues hosting them. Thus, a circadian oscillator has been proposed to be located within fish liver. In this vertebrate group, the role played by the circadian system in regulating metabolic processes in liver is mostly unknown. We, therefore investigated the liver of rainbow trout (Oncorhynchus mykiss) as a potential element participating in the regulation of circadian rhythms in fish by hosting a functional circadian oscillator. The presence and expression pattern of main components of the circadian molecular machinery (clock1a, bmal1, per1 and rev-erbß-like) were assessed. Furthermore, the role of environmental cues such as light and food, and their interaction in order to modulate the circadian oscillator was also assessed by exposing animals to constant conditions (absence of light for 48 h, and/or a 4 days fasting period). Our results demonstrate the existence of a functional circadian oscillator within trout liver, as demonstrated by significant rhythms of all clock genes assessed, independently of the environmental conditions studied. In addition, the daily profile of mRNA abundance of clock genes is influenced by both light (mainly clock1a and per1) and food (rev-erbß-like), which is indicative of an interaction between both synchronizers. Our results point to rev-erbß-like as possible mediator between the influence of light and food on the circadian oscillator within trout liver, since its daily profile is influenced by both light and food, thus affecting that of bmal1.


Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Alimentos , Regulação da Expressão Gênica/fisiologia , Animais , Proteínas CLOCK/genética , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Fotoperíodo , RNA Mensageiro/metabolismo , Fatores de Tempo
12.
Am J Physiol Regul Integr Comp Physiol ; 311(4): R658-R668, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27465737

RESUMO

We hypothesize that ceramides are involved in the regulation of food intake in fish. Therefore, we assessed in rainbow trout (Oncorhynchus mykiss) the effects of intracerebroventricular treatment with C6:0 ceramide on food intake. In a second experiment, we assessed the effects in brain areas of ceramide treatment on neuropeptide expression, fatty acid-sensing systems, and cellular signaling pathways. Ceramide treatment induced a decrease in food intake, a response opposed to the orexigenic effect described in mammals, which can be related to enhanced mRNA abundance of cocaine and amphetamine-related transcript and proopiomelanocortin and decreased mRNA abundance of Agouti-related protein and neuropeptide Y. Fatty acid-sensing systems appear to be inactivated by ceramide treatment. The mRNA abundance of integrative sensors AMPK and sirtuin 1, and the phosphorylation status of cellular signaling pathways dependent on protein kinase B, AMPK, mammalian target of rapamycin (mTOR), and forkhead box protein O1 (FoxO1) are generally activated by ceramide treatment. However, there are differences between hypothalamus and hindbrain in the phosphorylation status of AMPK (decreased in hypothalamus and increased in hindbrain), mTOR (decreased in hypothalamus and increased in hindbrain), and FoxO1 (increased in hypothalamus and decreased in hindbrain) to ceramide treatment. The results suggest that ceramides are involved in the regulation of food intake in rainbow trout through mechanisms comparable to those characterized previously in mammals in some cases.


Assuntos
Regulação do Apetite/fisiologia , Apetite/fisiologia , Encéfalo/metabolismo , Ceramidas/metabolismo , Ingestão de Alimentos/fisiologia , Oncorhynchus mykiss/fisiologia , Animais
13.
Artigo em Inglês | MEDLINE | ID: mdl-27139261

RESUMO

We previously obtained evidence in rainbow trout peripheral tissues such as liver and Brockmann bodies (BB) for the presence and response to changes in circulating levels of glucose (induced by intraperitoneal hypoglycaemic and hyperglycaemic treatments) of glucosensing mechanisms others than that mediated by glucokinase (GK). There were based on mitochondrial production of reactive oxygen species (ROS) leading to increased expression of uncoupling protein 2 (UCP2), and sweet taste receptor in liver and BB, and on liver X receptor (LXR) and sodium/glucose co-transporter 1 (SGLT-1) in BB. We aimed in the present study to obtain further in vitro evidence for the presence and functioning of these systems. In a first experiment, pools of sliced liver and BB were incubated for 6h at 15°C in modified Hanks' medium containing 2, 4, or 8mM d-glucose, and we assessed the response of parameters related to these glucosensing mechanisms. In a second experiment, pools of sliced liver and BB were incubated for 6h at 15°C in modified Hanks' medium with 8mM d-glucose alone (control) or containing 1mM phloridzin (SGLT-1 antagonist), 20µM genipin (UCP2 inhibitor), 1µM trolox (ROS scavenger), 100µM bezafibrate (T1R3 inhibitor), and 50µM geranyl-geranyl pyrophosphate (LXR inhibitor). The results obtained in both experiments support the presence and functioning of glucosensor mechanisms in liver based on sweet taste receptor whereas in BB the evidence support those based on LXR, mitochondrial activity and sweet taste receptor.


Assuntos
Sistema Endócrino/citologia , Sistema Endócrino/efeitos dos fármacos , Glucose/farmacologia , Receptores X do Fígado/metabolismo , Fígado/efeitos dos fármacos , Mitocôndrias/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Bezafibrato/farmacologia , Cromanos/farmacologia , Relação Dose-Resposta a Droga , Sistema Endócrino/metabolismo , Iridoides/farmacologia , Fígado/metabolismo , Receptores X do Fígado/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Florizina/farmacologia , Fosfatos de Poli-Isoprenil/farmacologia
14.
J Exp Biol ; 219(Pt 11): 1750-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27026717

RESUMO

We previously obtained evidence in rainbow trout for the presence and response to changes in circulating levels of glucose (induced by intraperitoneal hypoglycaemic and hyperglycaemic treatments) of glucosensing mechanisms based on liver X receptor (LXR), mitochondrial production of reactive oxygen species (ROS) leading to increased expression of uncoupling protein 2 (UCP2), and sweet taste receptor in the hypothalamus, and on sodium/glucose co-transporter 1 (SGLT-1) in hindbrain. However, these effects of glucose might be indirect. Therefore, we evaluated the response of parameters related to these glucosensing mechanisms in a first experiment using pooled sections of hypothalamus and hindbrain incubated for 6 h at 15°C in modified Hanks' medium containing 2, 4 or 8 mmol l(-1) d-glucose. The responses observed in some cases were consistent with glucosensing capacity. In a second experiment, pooled sections of hypothalamus and hindbrain were incubated for 6 h at 15°C in modified Hanks' medium with 8 mmol l(-1) d-glucose alone (control) or containing 1 mmol l(-1) phloridzin (SGLT-1 antagonist), 20 µmol l(-1) genipin (UCP2 inhibitor), 1 µmol l(-1) trolox (ROS scavenger), 100 µmol l(-1) bezafibrate (T1R3 inhibitor) and 50 µmol l(-1) geranyl-geranyl pyrophosphate (LXR inhibitor). The response observed in the presence of these specific inhibitors/antagonists further supports the proposal that critical components of the different glucosensing mechanisms are functioning in rainbow trout hypothalamus and hindbrain.


Assuntos
Glucoquinase/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Oncorhynchus mykiss/metabolismo , Rombencéfalo/metabolismo , Animais , Receptores X do Fígado/metabolismo , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo
15.
Gen Comp Endocrinol ; 228: 33-39, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26828819

RESUMO

We aimed to elucidate in rainbow trout (Oncorhynchus mykiss) the effects of central ghrelin (GHRL) treatment on the regulation of liver lipid metabolism, and the possible modulatory effect of central GHRL treatment on the simultaneous effects of raised levels of oleate. Thus, we injected intracerebroventricularly (ICV) rainbow trout GHRL in the presence or absence of oleate and evaluated in liver variables related to lipid metabolism. Oleate treatment elicited in liver of rainbow trout decreased lipogenesis and increased oxidative capacity in agreement with previous studies. Moreover, as demonstrated for the first time in fish in the present study, GHRL also acts centrally modulating lipid metabolism in liver, resulting in increased potential for lipogenesis and decreased potential for fatty acid oxidation, i.e. the converse effects to those elicited by central oleate treatment. The simultaneous treatment of GHRL and oleate confirmed these counteractive effects. Thus, the nutrient sensing mechanisms present in hypothalamus, particularly those involved in sensing of fatty acid, are involved in the control of liver energy metabolism in fish, and this control is modulated by the central action of GHRL. These results give support to the notion of hypothalamus as an integrative place for the regulation of peripheral energy metabolism in fish.


Assuntos
Grelina/farmacologia , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/fisiologia , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Grelina/administração & dosagem , Hipotálamo/efeitos dos fármacos , Infusões Intraventriculares , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Oncorhynchus mykiss/crescimento & desenvolvimento , Oxirredução
16.
J Comp Physiol B ; 186(4): 471-84, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26873742

RESUMO

Melatonin is synthesized in peripheral locations of vertebrates, including the gastrointestinal tract (GIT). In teleost, information regarding this topic is scarce. Here we studied the presence and synthesis of melatonin at the rainbow trout GIT. Different sections of trout GIT (from esophagus to hindgut) were dissected out and assayed for contents of melatonin, serotonin (5-HT) and its metabolite, 5-hydroxyindole acetic acid, as well as for aanat1, aanat2 and hiomt mRNA abundance. A trout group was pinealectomized to evaluate changes in plasma and gut melatonin content. Finally, the daily profile of melatonin and 5-HT content, and aanat1, aanat2 and hiomt mRNA abundance were analyzed in gut of trout kept under normal lighting, and then under constant darkness. Melatonin was detected in all GIT regions with higher concentrations in the muscular wall than in the mucosa, a similar trend to that of 5-HT. In contrast, transcripts of melatonin synthesis enzymes were more abundant in the mucosa. Pinealectomy did not affect melatonin levels in midgut and hindgut either at day or at night. Additionally, no daily rhythms could be defined for melatonin content in gut tissues but increases during late light phase and at midnight occurred. However, aanat1, aanat2 and hiomt mRNA abundance showed clear daily rhythms with peaks at night. These rhythms remained with a 3-h phase advanced peak in fish exposed to constant darkness. Our results provide clear evidence for a local synthesis of melatonin in trout GIT that might be influenced by the content of 5-HT in the tissue. The process is affected by environmental light cycle and is likely to be under circadian regulation.


Assuntos
Trato Gastrointestinal/metabolismo , Melatonina/biossíntese , Oncorhynchus mykiss/metabolismo , Fotoperíodo , Serotonina/metabolismo , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Animais , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Escuridão , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Trato Gastrointestinal/fisiologia , Regulação Enzimológica da Expressão Gênica , Melatonina/sangue , Melatonina/metabolismo , Oncorhynchus mykiss/fisiologia , Glândula Pineal/metabolismo , Glândula Pineal/cirurgia
17.
J Endocrinol ; 228(1): 25-37, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459641

RESUMO

There is no information available on fish as far as the possible effects of ghrelin on hypothalamic fatty acid metabolism and the response of fatty acid-sensing systems, which are involved in the control of food intake. Therefore, we assessed in rainbow trout the response of food intake, hypothalamic fatty acid-sensing mechanisms and expression of neuropeptides involved in the control of food intake to the central treatment of ghrelin in the presence or absence of a long-chain fatty acid such as oleate. We observed that the orexigenic actions of ghrelin in rainbow trout are associated with changes in fatty acid metabolism in the hypothalamus and an inhibition of fatty acid-sensing mechanisms, which ultimately lead to changes in the expression of anorexigenic and orexigenic peptides resulting in increased orexigenic potential and food intake. Moreover, the response to increased levels of oleate of hypothalamic fatty acid-sensing systems (activation), expression of neuropeptides (enhanced anorexigenic potential) and food intake (decrease) were counteracted by the simultaneous treatment with ghrelin. These changes provide evidence for the first time in fish of a possible modulatory role of ghrelin on the metabolic regulation by fatty acid of food intake occurring in the hypothalamus.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Ácidos Graxos/metabolismo , Grelina/farmacologia , Hipotálamo/efeitos dos fármacos , Oncorhynchus mykiss/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Ácidos Graxos/administração & dosagem , Ácidos Graxos/análise , Expressão Gênica/efeitos dos fármacos , Homeostase/fisiologia , Hipotálamo/fisiologia , Neuropeptídeos/análise , Neuropeptídeos/genética , Ácido Oleico/administração & dosagem , Ácido Oleico/análise , Ácido Oleico/metabolismo , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real/veterinária
18.
Artigo em Inglês | MEDLINE | ID: mdl-26439857

RESUMO

We hypothesize that glucosensor mechanisms other than that mediated by glucokinase (GK) are present in the liver and Brockmann bodies (BB) of rainbow trout, and are affected by stress. We evaluated in these tissues changes in parameters related to putative glucosensor mechanisms based on liver X receptor (LXR), mitochondrial activity, sweet taste receptor, and SGLT-1 6h after intraperitoneal injection of saline solution alone (normoglycaemic treatment) or containing insulin (hypoglycaemic treatment), or d-glucose (hyperglycaemic treatment). Half of tanks were kept at normal stocking density (NSD; 10kgfishmass·m(-3)) whereas the remaining tanks were kept at high stocking density (HSD; 70kgfishmass·m(-3)). The results provide for the first time in fish evidence for the presence of putative glucosensor systems based on mitochondrial activity and sweet taste receptor in liver whereas in BB systems based on LXR, mitochondrial activity, sweet taste receptor, and SGLT-1 could be operative. We also obtained for the first time in fish evidence for the functioning of integrative metabolic sensors in response to changes in nutrient levels since changes in the mRNA abundance of sirtuin 1 (SIRT-1) were observed in response to increased glucose levels. The stress conditions elicited by HSD altered the response of the glucosensor systems based on mitochondrial activity, sweet taste receptor, and SGLT-1 in the liver, and LXR and SGLT-1 in the BB.


Assuntos
Sistema Endócrino/metabolismo , Glucoquinase/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Animais , Sistema Endócrino/enzimologia , Regulação Enzimológica da Expressão Gênica , Fígado/enzimologia , Oncorhynchus mykiss/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Chronobiol Int ; 32(10): 1391-408, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26587750

RESUMO

The present research aimed to investigate in a model of teleost fish (rainbow trout) the existence of daily changes in activity and mRNA abundance of several proteins involved in major pathways of carbohydrate and lipid metabolism in liver, and to test whether or not both the light-dark cycle and food availability might influence such rhythms. For this purpose, four cohorts of animals previously adapted to normal housing conditions (12L:12D; Lights on at ZT0; feeding time at ZT2) were subjected to: normal conditions (LD); 48-h constant darkness (DD); 96-h food deprivation (LD + Fasting); or constant darkness and food deprivation (DD + Fasting) respectively. After such time periods, fish were sacrificed and sampled every 4-h on the following 24-h period (ZT/CT0, 4, 8, 12, 16, 20 and 0'). Our results reveal that cortisol and all the analysed genes (gk, pepck, g6pase, pk, glut2, hoad and fas) exhibited well defined daily rhythms, which persisted even in the absence of light and/or food indicating the endogenous nature of such rhythms. Even when the variations of enzyme activities were not significant, their rhythms mostly paralleled those of the respective gene expression. The rhythms of mRNA abundance were apparently dependent on the presence of food, but the light/dark cycle also influenced such rhythms. Since cortisol does not appear to be mainly involved in generating such daily rhythms in liver, alternative mechanisms might be involved, such as a direct interaction between metabolism and the circadian system.


Assuntos
Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Alimentos , Glucose/metabolismo , Luz , Fígado/metabolismo , RNA Mensageiro/metabolismo , Animais , Escuridão , Oncorhynchus mykiss/metabolismo , Fotoperíodo , Fatores de Tempo
20.
J Comp Physiol B ; 185(8): 869-82, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424703

RESUMO

There is no evidence in fish brain demonstrating the existence of changes in lactate metabolism in response to alterations in glucose levels. We induced in rainbow trout through intraperitoneal (IP) treatments, hypoglycaemic or hyperglycaemic changes to assess the response of parameters involved in lactate metabolism in glucosensing areas like hypothalamus and hindbrain. To distinguish those effects from those induced by peripheral changes in the levels of metabolites or hormones, we also carried out intracerebroventricular (ICV) treatments with 2-deoxy-D-glucose (2-DG, a non-metabolizable glucose analogue thus inducing local glucopenia) or glucose. Finally, we also incubated hypothalamus and hindbrain in vitro in the presence of increased glucose concentrations. The changes in glucose availability were in general correlated to changes in the amount of lactate in both areas. However, when we assessed in these areas the response of parameters related to lactate metabolism, the results obtained were contradictory. The increase in glucose levels did not produce in general the expected changes in those pathways with only a minor increase in their capacity of lactate production. The decrease in glucose levels was, however, more clearly related to a decreased capacity of the pathways involved in the production and use of lactate, and this was especially evident after ICV treatment with 2-DG in both areas. In conclusion, the present results while addressing the existence of changes in lactate metabolism after inducing changes in glucose levels in brain glucosensing areas only partially support the possible existence of an astrocyte-neuron lactate shuttle in hypothalamus and hindbrain of rainbow trout relating glucose availability to lactate production and use.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético , Glucose/metabolismo , Hiperglicemia/metabolismo , Hipoglicemia/metabolismo , Ácido Láctico/metabolismo , Oncorhynchus mykiss/metabolismo , Adaptação Fisiológica , Animais , Astrócitos/metabolismo , Metabolismo Energético/genética , Enzimas/genética , Enzimas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação Enzimológica da Expressão Gênica , Hiperglicemia/genética , Hiperglicemia/fisiopatologia , Hipoglicemia/genética , Hipoglicemia/fisiopatologia , Técnicas In Vitro , Neurônios/metabolismo , Oncorhynchus mykiss/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA