Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276697

RESUMO

The present work evaluates the influence of different properties of composite materials from natural sources. Films were prepared using the evaporative casting technique from corn starch reinforced with a waste material such as garlic husk (GH), using glycerin as a plasticizer. The results of the syntheses carried out demonstrated the synergy between these materials. In the morphological analysis, the compatibility and adequate dispersion of the reinforcer in the matrix were confirmed. Using Fourier transform infrared spectroscopy (FTIR), the interaction and formation of bonds between the matrix and the reinforcer were confirmed by the presence of some signals such as S-S and C-S. Similarly, thermogravimetric analysis (TGA) revealed that even at low concentrations, GH can slightly increase the decomposition temperature. Finally, from the results of dynamic mechanical analysis (DMA), it was possible to identify that the storage modulus increases significantly, up to 115%, compared to pure starch, especially at low concentrations of the reinforcer.

2.
Polymers (Basel) ; 10(3)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30966316

RESUMO

A hybrid nanocomposites based on epoxy reinforced with a combination of 1D and 2D carbon nanomaterials for improving impact resistance are reported. Multi-walled carbon nanotubes and oxidized-multi-walled carbon nanotubes are used as 1D nanoreinforcements, and graphene derivative materials such as graphene oxide and reduced graphene oxide are utilized as 2D nanoreinforcements. In this research, the impact resistance of epoxy matrix reinforced with 1D or 2D and the mixture of both nanomaterials is studied. The research is focused on evaluation of the influence of adding different combinations of nanomaterials into epoxy resin and their Izod impact response. Moreover, fracture surface of nanocomposites is observed by scanning electron microscopy. Images show differences between the surfaces of brittle nature on thermoset epoxy polymer and tough nanocomposites. Synergy created with 1D and 2D nanomaterials produces stable dispersions in the processing, reflected in the interface. The interactions in nanocomposites are evidenced by infrared spectra, principally on the peaks related to oxygenated functional groups present in nanomaterials and absent in polymer matrix. Consequently, an increase of 138% in fracture strength of nanocomposites is exhibited, in comparison to the neat epoxy matrix. In addition, hybrid nanocomposites were synthesized in two different methods to evaluate the influence of manufacturing method on final properties of nanocomposites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA