RESUMO
The superior colliculus is a structure located in the dorsal midbrain with well conserved function and connectivity across species. Essential for survival, the superior colliculus has evolved to trigger rapid orientation and avoidance movements in response to external stimuli. The increasing recognition of the widespread connectivity of the superior colliculus, not only with brainstem and spinal cord, but also with virtually all brain structures, has rekindled the interest on this structure and revealed novel roles in the past few years. In this review, we focus on the most recent advancements in understanding its cellular composition, connectivity and function, with a particular focus on how the cellular diversity and connectivity arises during development, as well as on its recent role in the emergence of sensory circuits.
RESUMO
Schizophrenia is associated with altered cortical circuitry. Although the schizophrenia risk gene NRG1 is known to affect the wiring of inhibitory interneurons, its role in excitatory neurons and axonal development is unclear. Here, we investigated the role of Nrg1 in the development of the corpus callosum, the major interhemispheric connection formed by cortical excitatory neurons. We found that deletion of Nrg1 impaired callosal axon development in vivo. Experiments in vitro and in vivo demonstrated that Nrg1 is cell-autonomously required for axonal outgrowth and that intracellular signaling of Nrg1 is sufficient to promote axonal development in cortical neurons and specifically in callosal axons. Furthermore, our data suggest that Nrg1 signaling regulates the expression of Growth Associated Protein 43, a key regulator of axonal growth. In conclusion, our study demonstrates that NRG1 is involved in the formation of interhemispheric callosal connections and provides a novel perspective on the relevance of NRG1 in excitatory neurons and in the etiology of schizophrenia.
Assuntos
Axônios , Corpo Caloso , Neuregulina-1 , Transdução de Sinais , Animais , Neuregulina-1/metabolismo , Neuregulina-1/genética , Corpo Caloso/metabolismo , Axônios/metabolismo , Camundongos , Esquizofrenia/metabolismo , Esquizofrenia/genética , Esquizofrenia/etiologia , Esquizofrenia/patologia , Camundongos Knockout , Neurônios/metabolismo , Proteína GAP-43/metabolismo , Proteína GAP-43/genética , Camundongos Endogâmicos C57BLRESUMO
Dissecting the role of the thalamus in neuropsychiatric disorders requires new models to analyze complex genetic interactions. In this issue of Cell Stem Cell, Shin et al. use patient-derived thalamocortical organoids to investigate 22q11.2 microdeletion impact on thalamic development, revealing significant transcriptional dysregulation linked to psychiatric disorders.
Assuntos
Córtex Cerebral , Transtornos Mentais , Humanos , Vias Neurais , Transtornos Mentais/genética , Tálamo , OrganoidesRESUMO
Calcium imaging is commonly used to visualize neural activity in vivo. In particular, mesoscale calcium imaging provides large fields of view, allowing for the simultaneous interrogation of neuron ensembles across the neuraxis. In the field of Developmental Neuroscience, mesoscopic imaging has recently yielded intriguing results that have shed new light on the ontogenesis of neural circuits from the first stages of life. We summarize here the technical approaches, basic notions for data analysis and the main findings provided by this technique in the last few years, with a focus on brain development in mouse models. As new tools develop to optimize calcium imaging in vivo, basic principles of neural development should be revised from a mesoscale perspective, that is, taking into account widespread activation of neuronal ensembles across the brain. In the future, combining mesoscale imaging of the dorsal surface of the brain with imaging of deep structures would ensure a more complete understanding of the construction of circuits. Moreover, the combination of mesoscale calcium imaging with other tools, like electrophysiology or high-resolution microscopy, will make up for the spatial and temporal limitations of this technique.
RESUMO
The thalamic nuclear complex contains excitatory projection neurons and inhibitory local neurons, the two cell types driving the main circuits in sensory nuclei. While excitatory neurons are born from progenitors that reside in the proliferative zone of the developing thalamus, inhibitory local neurons are born outside the thalamus and they migrate there during development. In addition to these cell types, which occupy most of the thalamus, there are two small thalamic regions where inhibitory neurons target extra-thalamic regions rather than neighboring neurons, the intergeniculate leaflet and the parahabenular nucleus. Like excitatory thalamic neurons, these inhibitory neurons are derived from progenitors residing in the developing thalamus. The assembly of these circuits follows fine-tuned genetic programs and it is coordinated by extrinsic factors that help the cells find their location, associate with thalamic partners, and establish connections with their corresponding extra-thalamic inputs and outputs. In this review, we bring together what is currently known about the development of the excitatory and inhibitory components of the thalamocortical sensory system, in particular focusing on the visual pathway and thalamic interneurons in mice.
Assuntos
Neurônios , Tálamo , Camundongos , Animais , Neurônios/fisiologia , Tálamo/fisiologia , Interneurônios/fisiologiaRESUMO
Sensory processing relies on the correct development of thalamocortical loops. Visual corticothalamic axons (CTAs) invade the dorsolateral geniculate nucleus (dLGN) of the thalamus in early postnatal mice according to a regulated program that includes activity-dependent mechanisms. Spontaneous retinal activity influences the thalamic incursion of CTAs, yet the perinatal thalamus also generates intrinsic patterns of spontaneous activity whose role in modulating afferent connectivity remains unknown. Here, we found that patterned spontaneous activity in the dLGN contributes to proper spatial and temporal innervation of CTAs. Disrupting patterned spontaneous activity in the dLGN delays corticogeniculate innervation under normal conditions and upon eye enucleation. The delayed innervation was evident throughout the first two postnatal weeks but resumes after eye-opening, suggesting that visual experience is necessary for the homeostatic recovery of corticogeniculate innervation.
Assuntos
Córtex Visual , Camundongos , Animais , Tálamo , Corpos Geniculados , Axônios , Retina , Vias VisuaisRESUMO
Whereas sensory perception relies on specialized sensory pathways, it is unclear whether these pathways originate as modality-specific circuits. We demonstrated that somatosensory and visual circuits are not by default segregated but require the earliest retinal activity to do so. In the embryo, somatosensory and visual circuits are intermingled in the superior colliculus, leading to cortical multimodal responses to whisker pad stimulation. At birth, these circuits segregate, and responses switch to unimodal. Blocking stage I retinal waves prolongs the multimodal configuration into postnatal life, with the superior colliculus retaining a mixed somato-visual molecular identity and defects arising in the spatial organization of the visual system. Hence, the superior colliculus mediates the timely segregation of sensory modalities in an input-dependent manner, channeling specific sensory cues to their appropriate sensory pathway.
Assuntos
Vias Aferentes , Colículos Superiores , Visão Ocular , Animais , Sinais (Psicologia) , Camundongos , Colículos Superiores/fisiologia , Vibrissas , Visão Ocular/fisiologiaRESUMO
Unimodal sensory loss leads to structural and functional changes in both deprived and nondeprived brain circuits. This process is broadly known as cross-modal plasticity. The evidence available indicates that cross-modal changes underlie the enhanced performances of the spared sensory modalities in deprived subjects. Sensory experience is a fundamental driver of cross-modal plasticity, yet there is evidence from early-visually deprived models supporting an additional role for experience-independent factors. These experience-independent factors are expected to act early in development and constrain neuronal plasticity at later stages. Here we review the cross-modal adaptations elicited by congenital or induced visual deprivation prior to vision. In most of these studies, cross-modal adaptations have been addressed at the structural and functional levels. Here, we also appraise recent data regarding behavioral performance in early-visually deprived models. However, further research is needed to explore how circuit reorganization affects their function and what brings about enhanced behavioral performance.
Assuntos
Plasticidade Neuronal , Privação Sensorial , Encéfalo , Humanos , Plasticidade Neuronal/fisiologia , Privação Sensorial/fisiologia , Visão OcularRESUMO
Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development.
Assuntos
Interneurônios , Células Piramidais , Dendritos/fisiologia , Interneurônios/fisiologia , Neurônios/fisiologia , TálamoRESUMO
Developing sensory circuits exhibit different patterns of spontaneous activity, patterns that are related to the construction and refinement of functional networks. During the development of different sensory modalities, spontaneous activity originates in the immature peripheral sensory structures and in the higher-order central structures, such as the thalamus and cortex. Certainly, the perinatal thalamus exhibits spontaneous calcium waves, a pattern of activity that is fundamental for the formation of sensory maps and for circuit plasticity. Here, we review our current understanding of the maturation of early (including embryonic) patterns of spontaneous activity and their influence on the assembly of thalamic and cortical sensory networks. Overall, the data currently available suggest similarities between the developmental trajectory of brain activity in experimental models and humans, which in the future may help to improve the early diagnosis of developmental disorders.
Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Humanos , Neurônios/fisiologia , Lobo Parietal/fisiologiaRESUMO
The fasciculus retroflexus is an important fascicle that mediates reward-related behaviors and is associated with different psychiatric diseases. It is the main habenular efference and constitutes a link between forebrain regions, the midbrain, and the rostral hindbrain. The proper functional organization of habenular circuitry requires complex molecular programs to control the wiring of the habenula during development. However, the mechanisms guiding the habenular axons toward their targets remain mostly unknown. Here, we demonstrate the role of the mesodiencephalic dopaminergic neurons (substantia nigra pars compacta and ventral tegmental area) as an intermediate target for the correct medial habenular axons navigation along the anteroposterior axis. These neuronal populations are distributed along the anteroposterior trajectory of these axons in the mesodiencephalic basal plate. Using in vitro and in vivo experiments, we determined that this navigation is the result of netrin 1 attraction generated by the mesodiencephalic dopaminergic neurons. This attraction is mediated by the receptor deleted in colorectal cancer (DCC), which is strongly expressed in the medial habenular axons. The increment in our knowledge on the fasciculus retroflexus trajectory guidance mechanisms opens the possibility of analyzing if its alteration in mental health patients could account for some of their symptoms.
RESUMO
Cortical interneurons born in the subpallium reach the cortex through tangential migration, whereas pyramidal cells reach their final position by radial migration. Purinergic signaling via P2Y1 receptors controls the migration of intermediate precursor cells from the ventricular zone to the subventricular zone. It was also reported that the blockade of A2A receptors (A2AR) controls the tangential migration of somatostatin+ interneurons. Here we found that A2AR control radial migration of cortical projection neurons. In A2AR-knockout (KO) mouse embryos or naïve mouse embryos exposed to an A2AR antagonist, we observed an accumulation of early-born migrating neurons in the lower intermediate zone at late embryogenesis. In utero knockdown of A2AR also caused an accumulation of neurons at the lower intermediate zone before birth. This entails the presently identified ability of A2AR to promote multipolar-bipolar transition and axon formation, critical for the transition of migrating neurons from the intermediate zone to the cortical plate. This effect seems to require extracellular ATP-derived adenosine since a similar accumulation of neurons at the lower intermediate zone was observed in mice lacking ecto-5'-nucleotidase (CD73-KO). These findings frame adenosine as a fine-tune regulator of the wiring of cortical inhibitory and excitatory networks.
Assuntos
Neurônios , Receptor A2A de Adenosina , Animais , Axônios , Movimento Celular/fisiologia , Interneurônios , Camundongos , Neurônios/fisiologia , Células Piramidais/fisiologia , Receptor A2A de Adenosina/genéticaRESUMO
Neural cell diversity is essential to endow distinct brain regions with specific functions. During development, progenitors within these regions are characterized by specific gene expression programs, contributing to the generation of diversity in postmitotic neurons and astrocytes. While the region-specific molecular diversity of neurons and astrocytes is increasingly understood, whether these cells share region-specific programs remains unknown. Here, we show that in the neocortex and thalamus, neurons and astrocytes express shared region-specific transcriptional and epigenetic signatures. These signatures not only distinguish cells across these two brain regions but are also detected across substructures within regions, such as distinct thalamic nuclei, where clonal analysis reveals the existence of common nucleus-specific progenitors for neurons and astrocytes. Consistent with their shared molecular signature, regional specificity is maintained following astrocyte-to-neuron reprogramming. A detailed understanding of these regional-specific signatures may thus inform strategies for future cell-based brain repair.
Assuntos
Astrócitos , Neocórtex , Astrócitos/metabolismo , Epigenômica , Neurônios/fisiologia , TálamoRESUMO
Rapid cellular responses to environmental stimuli are fundamental for development and maturation. Immediate early genes can be transcriptionally induced within minutes in response to a variety of signals. How their induction levels are regulated and their untimely activation by spurious signals prevented during development is poorly understood. We found that in developing sensory neurons, before perinatal sensory-activity-dependent induction, immediate early genes are embedded into a unique bipartite Polycomb chromatin signature, carrying active H3K27ac on promoters but repressive Ezh2-dependent H3K27me3 on gene bodies. This bipartite signature is widely present in developing cell types, including embryonic stem cells. Polycomb marking of gene bodies inhibits mRNA elongation, dampening productive transcription, while still allowing for fast stimulus-dependent mark removal and bipartite gene induction. We reveal a developmental epigenetic mechanism regulating the rapidity and amplitude of the transcriptional response to relevant stimuli, while preventing inappropriate activation of stimulus-response genes.
Assuntos
Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Precoces , Proteínas do Grupo Polycomb/genética , Animais , Cromatina/metabolismo , Células-Tronco Embrionárias/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Histonas/metabolismo , Camundongos Transgênicos , Mutação , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rombencéfalo/efeitos dos fármacos , Rombencéfalo/embriologia , Células Receptoras Sensoriais/fisiologiaRESUMO
The interpeduncular nucleus (IPN) is a hindbrain structure formed by three main subdivisions, the prodromal (Pro) domain located at the isthmus (Ist), and the rostral and caudal interpeduncular domains (IPR, IPC) within rhombomere 1 (r1). Various cell populations can be detected in the IPN through the expression of the Nkx6.1, Otp, Otx2, Pax7, and/or Irx2 transcription factors. These cell populations follow independent dorsoventral tangential and radial migratory routes targeting the ventral paramedian region of Ist and r1. Here we set out to examine the influence of the Netrin-1/DCC pathway on these migrations, since it is known to regulate other processes of neuronal migration in the brain. To this end, we analyzed IPN development in late gestational wild-type and DCC-/- mice, using mainly in situ hybridization (ISH) to identify the cells expressing each of the aforementioned genes. We found that the migration of Nkx6.1 + and Irx2 + cells into the Pro domain was strongly disrupted by the loss of DCC, as occurred with the migration of Pax7 +, Irx2 +, and Otp + cells that would normally form the IPR. In addition, there was mild impairment of the migration of the Pax7 + and Otx2 + cells that form the IPC. These results demonstrate that the Netrin-1/DCC signaling pathway is involved in the migration of most of the IPN populations, mainly affecting those of the Pro and IPR domains of this nucleus. There are psychiatric disorders that involve the medial habenula (mHb)-IPN system, so that this experimental model could provide a basis to study their neurodevelopmental etiology.
RESUMO
The mammalian brain's somatosensory cortex is a topographic map of the body's sensory experience. In mice, cortical barrels reflect whisker input. We asked whether these cortical structures require sensory input to develop or are driven by intrinsic activity. Thalamocortical columns, connecting the thalamus to the cortex, emerge before sensory input and concur with calcium waves in the embryonic thalamus. We show that the columnar organization of the thalamocortical somatotopic map exists in the mouse embryo before sensory input, thus linking spontaneous embryonic thalamic activity to somatosensory map formation. Without thalamic calcium waves, cortical circuits become hyperexcitable, columnar and barrel organization does not emerge, and the somatosensory map lacks anatomical and functional structure. Thus, a self-organized protomap in the embryonic thalamus drives the functional assembly of murine thalamocortical sensory circuits.
Assuntos
Neurônios/fisiologia , Córtex Somatossensorial/embriologia , Tálamo/embriologia , Potenciais de Ação , Animais , Mapeamento Encefálico , Sinalização do Cálcio , Estimulação Elétrica , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Plasticidade Neuronal , Canais de Potássio Corretores do Fluxo de Internalização/genéticaRESUMO
Programmed cell death and early activity contribute to the emergence of functional cortical circuits. While most neuronal populations are scaled-down by death, some subpopulations are entirely eliminated, raising the question of the importance of such demise for cortical wiring. Here, we addressed this issue by focusing on Cajal-Retzius neurons (CRs), key players in cortical development that are eliminated in postnatal mice in part via Bax-dependent apoptosis. Using Bax-conditional mutants and CR hyperpolarization, we show that the survival of electrically active subsets of CRs triggers an increase in both dendrite complexity and spine density of upper layer pyramidal neurons, leading to an excitation/inhibition imbalance. The survival of these CRs is induced by hyperpolarization, highlighting an interplay between early activity and neuronal elimination. Taken together, our study reveals a novel activity-dependent programmed cell death process required for the removal of transient immature neurons and the proper wiring of functional cortical circuits.
Assuntos
Apoptose/genética , Neurogênese/genética , Células Piramidais/metabolismo , Proteína X Associada a bcl-2/genética , Animais , Animais Recém-Nascidos , Polaridade Celular/genética , Córtex Cerebral/metabolismo , Estimulação Elétrica , Células Intersticiais de Cajal/metabolismo , Camundongos , Proteínas Mutantes/genética , Células Piramidais/patologiaRESUMO
For the past two decades, we have advanced in our understanding of the mechanisms implicated in the formation of brain circuits. The connection between the cortex and thalamus has deserved much attention, as thalamocortical connectivity is crucial for sensory processing and motor learning. Classical dye tracing studies in wild-type and knockout mice initially helped to characterize the developmental progression of this connectivity and revealed key transcription factors involved. With the recent advances in technical tools to specifically label subsets of projecting neurons, knock-down genes individually and/or modify their activity, the field has gained further understanding on the rules operating in thalamocortical circuit formation and plasticity. In this review, I will summarize the most relevant discoveries that have been made in this field, from development to early plasticity processes covering three major aspects: axon guidance, thalamic influence on sensory cortical specification, and the role of spontaneous thalamic activity. I will emphasize how the implementation of new tools has helped the field to progress and what I consider to be open questions and the perspective for the future.
Assuntos
Axônios/fisiologia , Córtex Cerebral/fisiologia , Interneurônios/fisiologia , Plasticidade Neuronal/fisiologia , Tálamo/fisiologia , Animais , Mapeamento Encefálico , Camundongos , Vias Neurais/fisiologiaRESUMO
The developmental programs that control the specification of cortical and thalamic territories are maintained largely as independent processes. However, bulk of evidence demonstrates the requirement of the reciprocal interactions between cortical and thalamic neurons as key for the correct development of functional thalamocortical circuits. This reciprocal loop of connections is essential for sensory processing as well as for the execution of complex sensory-motor tasks. Here, we review recent advances in our understanding of how mutual collaborations between both brain regions define area patterning and cell differentiation in the thalamus and cortex.