Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566175

RESUMO

The development of novel cancer therapeutic strategies has garnered increasing interest in cancer research. Among the therapeutic choices, chemosensitizers have shown exciting prospects. Peptides are an attractive alternative among the molecules that may be used as chemosensitizers. We rationally designed a new-to-nature peptide, nurP28, derived from the 22-kDa α-zein protein sequence (entry Q00919_MAIZE). The resultant sequence of the nurP28 peptide after the addition of arginine residues was LALLALLRLRRRATTAFIIP, and we added acetyl and amide groups at the N- and C-terminus, respectively, for capping. We evaluated the cytotoxicity of the nurP28 peptide alone and in combination with docetaxel in fibroblast monolayers and breast cancer monolayers and spheroids. Our results indicated that nurP28 is not cytotoxic to human fibroblasts or cancer cells. Nevertheless, when combined with 1 µM docetaxel, 3 ng/mL nurP28 induced equivalent (in MCF7 monolayers) and higher (in MCF7 spheroids) cytotoxic effects than 10-fold higher doses of docetaxel alone. These findings suggest that nurP28 may act as a chemosensitizer in breast cancer treatment. This study describes the enhancing "anti-cancer" effects of nurP28 in breast cancer 2D and 3D cultures treated with docetaxel. Further studies should explore the mechanisms underlying these effects and assess the clinical potential of our findings using animal models.


Assuntos
Antineoplásicos , Neoplasias da Mama , Zeína , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Docetaxel/farmacologia , Feminino , Humanos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Esferoides Celulares
2.
Folia Microbiol (Praha) ; 67(1): 1-13, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34401996

RESUMO

Bromelia karatas L. is a plant species from the Americas. The presence of proteases in fruits of B. karatas has been reported but scarcely studied in detail. Proteolytic enzymes from Ananas comosus have displayed antifungal and antibacterial activity. Thus, novel proteases present in B. karatas may be useful as a source of compounds against microorganisms in medicine and food production. In this work, the protein extract from the fruits of B. karatas was characterized and its antibacterial activity against Salmonella Typhimurium and Listeria monocytogenes was determined for the first time. Proteins highly similar to ananain and the fruit bromelain from A. comosus were identified as the main proteases in B. karatas fruits using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The soluble protein extract (SPE) at a concentration of 2.0 mg/mL displayed up to 80% of antibacterial activity against S. Typhimurium. Complete inhibition of L. monocytogenes was reached with up to 1.65 mg/mL of SPE. Plant protease extract containing ananain-like enzyme inhibited up to 90% against S. Typhimurium and up to 85% against L. monocytogenes using only 10 µg/mL of the partial-purified enzyme.


Assuntos
Antibacterianos , Bromelia , Cisteína Proteases , Listeria monocytogenes , Extratos Vegetais/farmacologia , Salmonella typhimurium , Antibacterianos/farmacologia , Bromelaínas , Bromelia/química , Cromatografia Líquida , Cisteína Endopeptidases , Listeria monocytogenes/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Espectrometria de Massas em Tandem
3.
Molecules ; 25(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227894

RESUMO

In this study, we characterized three novel peptides derived from the 19 kDa α-zein, and determined their bioactive profile in vitro and developed a structural model in silico. The peptides, 19ZP1, 19ZP2 and 19ZP3, formed α-helical structures and had positive and negative electrostatic potential surfaces (range of -1 to +1). According to the in silico algorithms, the peptides displayed low probabilities for cytotoxicity (≤0.05%), cell penetration (10-33%) and antioxidant activities (9-12.5%). Instead, they displayed a 40% probability for angiotensin-converting enzyme (ACE) inhibitory activity. For in vitro characterization, peptides were synthesized by solid phase synthesis and tested accordingly. We assumed α-helical structures for 19ZP1 and 19ZP2 under hydrophobic conditions. The peptides displayed antioxidant activity and ACE-inhibitory activity, with 19ZP1 being the most active. Our results highlight that the 19 kDa α-zein sequences could be explored as a source of bioactive peptides, and indicate that in silico approaches are useful to predict peptide bioactivities, but more structural analysis is necessary to obtain more accurate data.


Assuntos
Simulação por Computador , Peptídeos/análise , Peptídeos/farmacologia , Zea mays/química , Zeína/química , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Peptídeos/síntese química , Peptídeos/química , Solventes/química
4.
Curr Protein Pept Sci ; 18(10): 1035-1042, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27526930

RESUMO

The number of protein folds in nature is limited, thus is not surprising that proteins with the same fold are able to exert different functions. The cysteine protease inhibitors that adopt an immunoglobulin- like fold (Ig-ICPs) are inhibitors encoded in bacteria and protozoan parasites. Structural studies indicate that these inhibitors resemble the structure of archetypical proteins with an Ig fold, like antibodies, cadherins or cell receptors. The structure of Ig-ICPs from four different protozoan parasites clearly shows the presence of three loops that form part of a protein-ligand interaction surface that resembles the antigen binding sites of antibodies. Thus, Ig-ICPs bind to different cysteine proteases using a tripartite mechanism in which their BC, DE and FG loops are responsible for the main interactions with the target cysteine protease. Ig-ICPs from different protozoan parasites regulate the enzymatic activity of host or parasite's proteases and thus regulate virulence and pathogenesis.


Assuntos
Inibidores de Cisteína Proteinase/química , Entamoeba histolytica/genética , Imunoglobulinas/química , Leishmania mexicana/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Trypanosoma cruzi/genética , Sítios de Ligação , Inibidores de Cisteína Proteinase/metabolismo , Entamoeba histolytica/metabolismo , Entamoeba histolytica/patogenicidade , Expressão Gênica , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Leishmania mexicana/metabolismo , Leishmania mexicana/patogenicidade , Ligantes , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA