Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 14(3): 202-16, 2013 03.
Artigo em Inglês | MEDLINE | ID: mdl-23385869

RESUMO

A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.


Assuntos
Algoritmos , Córtex Cerebral/citologia , Interneurônios/classificação , Interneurônios/citologia , Terminologia como Assunto , Ácido gama-Aminobutírico/metabolismo , Animais , Teorema de Bayes , Córtex Cerebral/metabolismo , Análise por Conglomerados , Humanos , Interneurônios/metabolismo
2.
Neuroinformatics ; 9(4): 347-69, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21305364

RESUMO

Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback-Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology.


Assuntos
Teorema de Bayes , Dendritos/ultraestrutura , Citometria por Imagem/métodos , Imageamento Tridimensional/métodos , Modelos Neurológicos , Células Piramidais/citologia , Animais , Simulação por Computador , Dendritos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA