Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 15(1): 128, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411476

RESUMO

A total of 398 kt of pasta waste (PW), generated during the production process of pasta, were produced in 2021. Due to its chemical composition and practically zero cost, PW has already been studied as a raw material for the production of lactic acid (LA) through fermentations. The main objective of this article was to improve the economic viability of the process by replacing commercial enzymes, necessary for starch hydrolysis in PW, with raw enzymes also produced from wastes. Enzyme synthesis was achieved through solid-state fermentation (SsF) of wheat bran by Aspergillus awamori or Aspergillus oryzae at various moisture contents. The maximum amylase activity (52 U/g dry solid) was achieved after 2 days of fermentation with A. awamori at 60% of moisture content. After that, the enzymes were used to hydrolyse PW, reaching 76 g/L of total sugars, 65 g/L of glucose and a yield of 0.72 gglu/gds with the enzymes produced by A. awamori. Subsequently, the hydrolysate was fermented into LA using Bacillus coagulans A559, yielding 52 g/L and 49 g/L with and without yeast extract, respectively. Remarkably, compared to the process with commercial enzymes, a higher LA yield was reached when enzymes produced by SsF were added (0.80 gLA/gglu). Furthermore, the productivities between the two processes were similar (around 3.9 g/L/h) which highlights that yeast extract is not necessary when using enzymes produced by SsF.

2.
J Fungi (Basel) ; 8(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36294602

RESUMO

Peptaibols (Paib), are a class of biologically active peptides isolated from soil, fungi and molds, which have interesting properties as antimicrobial agents. Paib production was optimized in flasks by adding sucrose as a carbon source, 2-aminoisobutyric acid (Aib) as an additive amino acid, and F. oxysporum cell debris as an elicitor. Paib were purified, sequenced and identified by High-performance liquid chromatography (HPLC)coupled to mass spectrometry. Afterward, a Paib extract was obtained from the optimized fermentations. The biological activity of these extracts was evaluated using in vitro and in vivo methods. The extract inhibited the growth of specific plant pathogens, and it showed inhibition rates similar to those from commercially available fungicides. Growth inhibition rates were 92.2, 74.2, 58.4 and 36.2% against Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria alternata and Fusarium oxysporum, respectively. Furthermore, the antifungal activity was tested in tomatoes inoculated with A. alternata, the incidence of the disease in tomatoes treated with the extract was 0%, while the untreated fruit showed a 92.5% incidence of infection Scanning electron microscopy images showed structural differences between the fungi treated with or without Paib. The most visual alterations were sunk and shriveled morphology in spores, while the hyphae appeared to be fractured, rough and dehydrated.

3.
J Fungi (Basel) ; 7(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34575805

RESUMO

Solid state fermentation (SsF) is recognized as a suitable process for the production of enzymes using organic residues as substrates. However, only a few studies have integrated an evaluation of the feasibility of applying enzymes produced by SsF into subsequent hydrolyses followed by the production of target compounds, e.g., lactic acid (LA), through submerged-liquid fermentations (SmF). In this study, wheat bran (WB) was used as the substrate for the production of enzymes via SsF by Aspergillus awamori DSM No. 63272. Following optimization, cellulase and glucoamylase activities were 73.63 ± 5.47 FPU/gds and 107.10 ± 2.63 U/gdb after 7 days and 5 days of fermentation, respectively. Enzymes were then used for the hydrolysis of the organic fraction of municipal solid waste (OFMSW). During hydrolysis, glucose increased considerably with a final value of 19.77 ± 1.56 g/L. Subsequently, hydrolysates were fermented in SmF by Bacillus coagulans A166 increasing the LA concentration by 15.59 g/L. The data reported in this study provides an example of how SsF and SmF technologies can be combined for the valorization of WB and OFMSW.

4.
Microorganisms ; 8(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708134

RESUMO

The utilisation of waste materials and industrial residues became a priority within the bioeconomy concept and the production of biobased chemicals. The aim of this study was to evaluate the feasibility to continuously produce L-lactic acid from different renewable substrates, in a multi-substrate strategy mode. Based on batch experiments observations, Bacillus coagulans A534 strain was able to continuously metabolise acid whey, sugar beet molasses, sugar bread, alfalfa press green juice and tapioca starch. Additionally, reference experiments showed its behaviour in standard medium. Continuous fermentations indicated that the highest productivity was achieved when molasses was employed with a value of 10.34 g·L-1·h-1, while the lactic acid to sugar conversion yield was 0.86 g·g-1. This study demonstrated that LA can be efficiently produced in continuous mode regardless the substrate, which is a huge advantage in comparison to other platform chemicals.

5.
J Microbiol Methods ; 160: 60-67, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30905501

RESUMO

Solid state fermentation (SSF) is an ancient technique which keeps attracting the attention of the food and biotechnology industries; however, a direct quantification of microbial biomass is still a fundamental challenge in this type of processes. Typically, growth is measured using indirect and destructive methods which do not allow a continuous evaluation of the evolution of microbial biomass within a single system. This article presents a non-destructive, quick and simple technique, based on digital imaging analysis (DIA) for the evaluation of growth in SSF laboratory experiments. DIA uses computational analysis of images from a SSF to measure areas and colour changes on a surface. The method can then be used to monitor microbial growth by assigning quantitative values for the growth of filamentous fungi. Firstly, studies on agar plates are used for the description of the method and to illustrate how it can be used to monitor fungal colony areas and densities. Following that, agro-industrial residues are used to demonstrate the application of the technique. DIA proved to be a practical and inexpensive tool to measure colony areas and densities. Furthermore, it is a non-destructive and non-intrusive method, which means that the evaluation of growth can be achieved within a single system.


Assuntos
Aspergillus/fisiologia , Biotecnologia/métodos , Fermentação/fisiologia , Rhizobium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA