Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
PeerJ ; 12: e17467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827301

RESUMO

Dye-decolorizing peroxidases (DyPs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen transfer reactions similarly to oxygenases. DyPs utilize hydrogen peroxide (H2O2) both as an electron acceptor co-substrate and as an electron donor when oxidized to their respective radicals. The production of both DyPs and lignin-modifying enzymes (LMEs) is regulated by the carbon source, although less readily metabolizable carbon sources do improve LME production. The present study analyzed the effect of glycerol on Pleurotus ostreatus growth, total DyP activity, and the expression of three Pleos-dyp genes (Pleos-dyp1, Pleos-dyp2 and Pleos-dyp4), via real-time RT-qPCR, monitoring the time course of P. ostreatus cultures supplemented with either glycerol or glucose and Acetyl Yellow G (AYG) dye. The results obtained indicate that glycerol negatively affects P. ostreatus growth, giving a biomass production of 5.31 and 5.62 g/L with respective growth rates (micra; m) of 0.027 and 0.023 h-1 for fermentations in the absence and presence of AYG dye. In contrast, respective biomass production levels of 7.09 and 7.20 g/L and growth rates (µ) of 0.033 and 0.047 h-1 were observed in equivalent control fermentations conducted with glucose in the absence and presence of AYG dye. Higher DyP activity levels, 4,043 and 4,902 IU/L, were obtained for fermentations conducted on glycerol, equivalent to 2.6-fold and 3.16-fold higher than the activity observed when glucose is used as the carbon source. The differential regulation of the DyP-encoding genes in P. ostreatus were explored, evaluating the carbon source, the growth phase, and the influence of the dye. The global analysis of the expression patterns throughout the fermentation showed the up- and down- regulation of the three Pleos-dyp genes evaluated. The highest induction observed for the control media was that found for the Pleos-dyp1 gene, which is equivalent to an 11.1-fold increase in relative expression (log2) during the stationary phase of the culture (360 h), and for the glucose/AYG media was Pleos-dyp-4 with 8.28-fold increase after 168 h. In addition, glycerol preferentially induced the Pleos-dyp1 and Pleos-dyp2 genes, leading to respective 11.61 and 4.28-fold increases after 144 h. After 360 and 504 h of culture, 12.86 and 4.02-fold increases were observed in the induction levels presented by Pleos-dyp1 and Pleos-dyp2, respectively, in the presence of AYG. When transcription levels were referred to those found in the control media, adding AYG led to up-regulation of the three dyp genes throughout the fermentation. Contrary to the fermentation with glycerol, where up- and down-regulation was observed. The present study is the first report describing the effect of a less-metabolizable carbon source, such as glycerol, on the differential expression of DyP-encoding genes and their corresponding activity.


Assuntos
Corantes , Glicerol , Pleurotus , Glicerol/metabolismo , Glicerol/farmacologia , Pleurotus/genética , Pleurotus/enzimologia , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Corantes/metabolismo , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Peroxidases/genética , Peroxidases/metabolismo , Glucose/metabolismo
2.
Microbiology (Reading) ; 169(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410634

RESUMO

Pozol is a traditional prehispanic Mexican beverage made from fermented nixtamal dough; it is still part of everyday life in many communities due to its nutritional properties. It is the product of spontaneous fermentation and has a complex microbiota composed primarily of lactic acid bacteria (LAB). Although this is a beverage that has been used for centuries, the microbial processes that participate in this fermented beverage are not well understood. We fermented corn dough to produce pozol and sampled it at four key times to follow the community and metabolic changes (0, 9 24 and 48 h) by shotgun metagenomic sequencing to determine structural changes in the bacterial community, as well as metabolic genes used for substrate fermentation, nutritional properties and product safety. We found a core of 25 abundant genera throughout the 4 key fermentation times, with the genus Streptococcus being the most prevalent throughout fermentation. We also performed an analysis focused on metagenomic assembled genomes (MAGs) to identify species from the most abundant genera. Genes involving starch, plant cell wall (PCW), fructan and sucrose degradation were found throughout fermentation and in MAGs, indicating the metabolic potential of the pozol microbiota to degrade these carbohydrates. Complete metabolic modules responsible for amino acid and vitamin biosynthesis increased considerably during fermentation, and were also found to be abundant in MAG, highlighting the bacterial contribution to the well-known nutritional properties attributed to pozol. Further, clusters of genes containing CAZymes (CGCs) and essential amino acids and vitamins were found in the reconstructed MAGs for abundant species in pozol. The results of this study contribute to our understanding of the metabolic role of micro-organisms in the transformation of corn to produce this traditional beverage and their contribution to the nutritional impact that pozol has had for centuries in the traditional cuisine of southeast Mexico.


Assuntos
Bactérias , Zea mays , Zea mays/microbiologia , México , Bactérias/genética , Streptococcus/metabolismo , Fermentação
3.
Foods ; 12(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37174431

RESUMO

Leuconostoc mesenteroides strains are common contributors in fermented foods producing a wide variety of polysaccharides from sucrose through glycosyltransferases (GTFs). These polymers have been proposed as protective barriers against acidity, dehydration, heat, and oxidative stress. Despite its presence in many traditional fermented products and their association with food functional properties, regulation of GTFs expression in Ln. mesenteroides is still poorly understood. The strain Ln. mesenteroides ATCC 8293 contains three glucansucrases genes not found in operons, and three fructansucrases genes arranged in two operons, levLX and levC-scrB, a Glycoside-hydrolase. We described the first differential gene expression analysis of this strain when cultivated in different carbon sources. We observed that while GTFs are expressed in the presence of most sugars, they are down-regulated in xylose. We ruled out the regulatory effect of CcpA over GTFs and did not find regulatory elements with a direct effect on glucansucrases in the condition assayed. Our findings suggest that only operon levLX is repressed in xylose by LexA and that both fructansucrases operons can be regulated by the VicK/VicR system and PerR. It is essential to further explore the effect of environmental conditions in Ln. mesenteroides bacteria to better understand GTFs regulation and polymer function.

4.
Microb Genom ; 9(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36884014

RESUMO

Litopenaeus vannamei, the Pacific whiteleg shrimp, is one of the most marketable species in aquaculture worldwide. However, it is susceptible to different infections causing considerable losses in production each year. Consequently, using prebiotics that promotes the proliferation of beneficial bacteria and strengthen the immune system is a current strategy for disease control. In this study, we isolated two strains of E. faecium from the gut of L. vannamei fed with agavin-supplemented diets. These isolates showed antibacterial activity against Vibrio parahaemolyticus, Vibrio harveyi and Vibrio alginolyticus, most likely due to peptidoglycan hydrolase (PGH) activity. Furthermore, we sequenced the genome of one isolate. As a result, we observed three proteins related to the production of bacteriocins, a relevant trait for selecting probiotic strains since they can inhibit the invasion of potential pathogens. Additionally, the genome annotation showed genes related to the production of essential nutrients for the host. It lacked two of the most common factors associated with virulence in Enterococcus pathogenic strains (esp and hyl). Thus, this host-probiotic-derived strain has potential application not only in shrimp health but also in alternative aquatic environments, as it is adapted to coexist within the gut shrimp microbiota, independently of the diet.


Assuntos
Enterococcus faecium , Penaeidae , Probióticos , Vibrio parahaemolyticus , Animais , Enterococcus faecium/genética , Probióticos/farmacologia , Suplementos Nutricionais , Dieta , Penaeidae/microbiologia
5.
Microb Cell Fact ; 22(1): 18, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703199

RESUMO

BACKGROUND: Although Levan-type fructooligosaccharides (L-FOS) have been shown to exhibit prebiotic properties, no efficient methods for their large-scale production have been proposed. One alternative relies on the simultaneous levan synthesis from sucrose, followed by endolevanase hydrolysis. For this purpose, several options have been described, particularly through the synthesis of the corresponding enzymes in recombinant Escherichia coli. Major drawbacks still consist in the requirement of GRAS microorganisms for enzyme production, but mainly, the elimination of glucose and fructose, the reaction by-products. RESULTS: The expression of a fusion enzyme between Bacillus licheniformis endolevanase (LevB1) and B. subtilis levansucrase (SacB) in Pichia pastoris cultures, coupled with the simultaneous synthesis of L-FOS from sucrose and the elimination of the residual monosaccharides, in a single one-pot process was developed. The proof of concept at 250 mL flask-level, resulted in 8.62 g of monosaccharide-free L-FOS and 12.83 gDCW of biomass, after 3 successive sucrose additions (30 g in total), that is a 28.7% yield (w L-FOS/w sucrose) over a period of 288 h. At a 1.5 L bioreactor-level, growth considerably increased and, after 59 h and two sucrose additions, 72.9 g of monosaccharide-free L-FOS and 22.77 gDCW of biomass were obtained from a total of 160 g of sucrose fed, corresponding to a 45.5% yield (w L-FOS/w sucrose), 1.6 higher than the flask system. The L-FOS obtained at flask-level had a DP lower than 20 fructose units, while at bioreactor-level smaller oligosaccharides were obtained, with a DP lower than 10, as a consequence of the lower endolevanase activity in the flask-level. CONCLUSION: We demonstrate here in a novel system, that P. pastoris cultures can simultaneously be used as comprehensive system to produce the enzyme and the enzymatic L-FOS synthesis with growth sustained by sucrose by-products. This system may be now the center of an optimization strategy for an efficient production of glucose and fructose free L-FOS, to make them available for their application as prebiotics. Besides, P. pastoris biomass also constitutes an interesting source of unicellular protein.


Assuntos
Oligossacarídeos , Açúcares , Oligossacarídeos/metabolismo , Glucose , Monossacarídeos , Sacarose/metabolismo , Frutose/metabolismo , Frutanos/metabolismo
6.
Sci Rep ; 12(1): 6392, 2022 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-35430601

RESUMO

Prebiotics and probiotics have shown a number of beneficial impacts preventing diseases in cultured shrimps. Complex soluble carbohydrates are considered ideal for fostering microbiota biodiversity by fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPS). Here we evaluated the growth performance and microbiota composition of the white shrimp Litopenaeus vannamei after dietary intervention using agavin as a FODMAP prebiotic under farming conditions. Adult L. vannamei were raised at a shrimp farm and the effect of agavin supplemented at 2% (AG2) or 10% (AG10) levels were compared to an agavin-free basal diet (BD). After 28 days-trial, the feed conversion ratio, total feed ingested, and protein efficiency ratio was significantly improved on animals fed with AG2. At the same time, no effect on growth performance was observed in AG10. Surprisingly, after sequencing the V3-V4 regions of the 16S rRNA gene a higher microbial richness and diversity in the hepatopancreas and intestine was found only in those animals receiving the AG10 diet, while those receiving the AG2 diet had a decreased richness and diversity, both diets compared to the BD. The beta diversity analysis showed a clear significant microbiota clustering by agavin diets only in the hepatopancreas, suggesting that agavin supplementation had a more substantial deterministic effect on the microbiota of hepatopancreas than on the intestine. We analyzed the literature to search beneficial microbes for shrimp's health and found sequences for 42 species in our 16S data, being significantly increased Lactobacillus pentosus, Pseudomonas putida and Pseudomonas synxantha in the hepatopancreas of the AG10 and Rodopseudomonas palustris and Streptococcus thermophiles th1435 in the hepatopancreas of the AG2, both compared to BD. Interestingly, when we analyzed the abundance of 42 beneficial microbes as a single microbial community "meta-community," found an increase in their abundance as agavin concentration increases in the hepatopancreas. In addition, we also sequenced the DNA of agavin and found 9 of the 42 beneficial microbes. From those, Lactobacillus lactis and Lactobacillus delbrueckii were found in shrimps fed with agavin (both AG2 and AG10), and Lysinibacillus fusiformis in AG10 and they were absent the BD diet, suggesting these three species could be introduced with the agavin to the diet. Our work provides evidence that agavin supplementation is associated with an increase of beneficial microbes for the shrimp microbiota at farming conditions. Our study provides the first evidence that a shrimp prebiotic may selectively modify the microbiota in an organ-dependent effect.


Assuntos
Microbiota , Penaeidae , Agricultura , Ração Animal/análise , Animais , Dieta/veterinária , Oligossacarídeos/metabolismo , Penaeidae/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
7.
Sci Rep ; 12(1): 730, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031648

RESUMO

Carbohydrate metabolism via cyclodextrins (CM-CD) is an uncommon starch-converting pathway that thoroughly depends on extracellular cyclomaltodextrin glucanotransferases (CGTases) to transform the surrounding starch substrate to α-(1,4)-linked oligosaccharides and cyclodextrins (CDs). The CM-CD pathway has emerged as a convenient microbial adaptation to thrive under extreme temperatures, as CDs are functional amphipathic toroids with higher heat-resistant values than linear dextrins. Nevertheless, although the CM-CD pathway has been described in a few mesophilic bacteria and archaea, it remains obscure in extremely thermophilic prokaryotes (Topt ≥ 70 °C). Here, a new monophyletic group of CGTases with an exceptional three-domain ABC architecture was detected by (meta)genome mining of extremely thermophilic Thermoanaerobacterales living in a wide variety of hot starch-poor environments on Earth. Functional studies of a representative member, CldA, showed a maximum activity in a thermoacidophilic range (pH 4.0 and 80 °C) with remarkable product diversification that yielded a mixture of α:ß:γ-CDs (34:62:4) from soluble starch, as well as G3-G7 linear dextrins and fermentable sugars as the primary products. Together, comparative genomics and predictive functional analysis, combined with data of the functionally characterized key proteins of the gene clusters encoding CGTases, revealed the CM-CD pathway in Thermoanaerobacterales and showed that it is involved in the synthesis, transportation, degradation, and metabolic assimilation of CDs.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Ciclodextrinas/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/fisiologia , Thermoanaerobacterium/metabolismo , Genoma Bacteriano/genética , Glucosiltransferases/metabolismo , Família Multigênica , Thermoanaerobacterium/genética
9.
Front Microbiol ; 12: 629449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815312

RESUMO

The genus Weissella is composed of a group of Gram-positive facultative anaerobe bacteria with fermentative metabolism. Strains of this genus have been isolated from various ecological niches, including a wide variety of fermented cereal foods. The present study aimed to determine the relative abundance and fermentation capabilities of Weissella species isolated from pozol, a traditional maya product made of lime-cooked (nixtamalized) fermented maize. We sequenced the V3-V4 regions of 16S rDNA; Weissella was detected early in the fermentation process and reached its highest relative abundance (3.89%) after 3 h of culture. In addition, we evaluated five Weissella strains previously isolated from pozol but reported as non-amylolytic, to define alternative carbon sources such as xylan, xylooligosaccharides, and sucrose. While no growth was observed on birch xylan, growth did occur on xylooligosaccharides and sucrose. Strains WcL17 and WCP-3A were selected for genomic sequencing, as the former shows efficient growth on xylooligosaccharides and the latter displays high glycosyltransferase (GTF) activity. Genomes of both strains were assembled and recorded, with a total of 2.3 Mb in 30 contigs for WcL17 and 2.2 Mb in 45 contigs for WCP-3a. Both strains were taxonomically assigned to Weissella confusa and genomic analyses were performed to evaluate the gene products encoding active carbohydrate enzymes (CAZy). Both strains have the gene content needed to metabolize sucrose, hemicellulose, cellulose, and starch residues, all available in pozol. Our results suggest that the range of secondary enzymatic activity in Weissella confusa strains confer them with wide capabilities to participate in fermentative processes of natural products with heterogeneous carbon sources.

10.
Front Nutr ; 7: 566950, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163505

RESUMO

Aguamiel is the sap collected from agave, while pulque is the result of the natural fermentation of aguamiel. Despite its ancestral origin and numerous publications on pulque production, little is known about the evolution and concentration of sugars and fructo-oligosaccharides in aguamiel, either during its daily accumulation or through the agave production lifetime. In this study, we examined aguamiel composition in three agave plants during their productive lifetime (4 to 9 months). After each collection, the agave pine is scraped to induce aguamiel to flow into an internally created cavity (cajete), producing a residual bagasse (metzal). We found that the concentration of agave fructans and sucrose, as well as the fructan profile, change during the aguamiel production process. During the daily collection, a small amount of agave fructans released from the pine by scraping is drawn into the cajete with the first milliliters of sap where it is then diluted with the inflow of aguamiel. The main component of aguamiel is the sucrose produced in high concentration in the leaves through photosynthesis and then hydrolyzed in the cajete as aguamiel accumulates. We also describe how the fructan profile changes during the accumulation of aguamiel in the cajete. In addition to the varying amount of sucrose that is hydrolyzed in the aguamiel accumulated, we found that fructo-oligosaccharides are either diluted, consumed, or hydrolyzed, depending on the plant and its production stage, thus yielding different fructan profiles. New fructo-oligosaccharides are, in some cases, synthesized by bacteria present in aguamiel. These profiles were also observed in aguamiel collected from ten different plants in the same production region. We also found that a considerable amount of agave fructans is lost in metzal (bagasse), the agave material that is scraped and thrown away twice a day during the production process.

11.
Int J Biol Macromol ; 161: 898-908, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32553967

RESUMO

Mutation S164A largely affects the transfructosylation properties of Bacillus subtilis levansucrase (SacB). The variant uses acceptors such as glucose and short levans with an average molecular weight of 7.6 kDa more efficiently than SacB, leading to the enhanced synthesis of medium and high molecular weight polymer and a blasto-oligosaccharide series with a polymerization degree of 2-10. A 3-fold increase in blasto-oligosaccharides yield is provoked by the modified interplay between the variant and glucose. Despite its modified product specificity, protein-carbohydrate and protein-protein interactions are still a major factor affecting size and distribution of levan molecular weight. This study highlights the importance of critical factors such as protein concentration in the analysis of wild-type and mutagenized levansucrases. Docking experiments with the crystal structures of SacB and variant S164A - the latter obtained at a 2.6 Å resolution - identified unreported potential binding subsites for fructosyl moieties on the surface of both enzymes.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Frutanos/genética , Hexosiltransferases/genética , Mutação/genética , Sítios de Ligação/genética , Metabolismo dos Carboidratos/genética , Glucose/genética , Cinética , Peso Molecular , Oligossacarídeos/genética , Mapas de Interação de Proteínas/genética
12.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683666

RESUMO

Deep Eutectic Solvents (DES) were investigated as new reaction media for the synthesis of alkyl glycosides catalyzed by the thermostable α-amylase from Thermotoga maritima Amy A. The enzyme was almost completely deactivated when assayed in a series of pure DES, but as cosolvents, DES containing alcohols, sugars, and amides as hydrogen-bond donors (HBD) performed best. A choline chloride:urea based DES was further characterized for the alcoholysis reaction using methanol as a nucleophile. As a cosolvent, this DES increased the hydrolytic and alcoholytic activity of the enzyme at low methanol concentrations, even when both activities drastically dropped when methanol concentration was increased. To explain this phenomenon, variable-temperature, circular dichroism characterization of the protein was conducted, finding that above 60 °C, Amy A underwent large conformational changes not observed in aqueous medium. Thus, 60 °C was set as the temperature limit to carry out alcoholysis reactions. Higher DES contents at this temperature had a detrimental but differential effect on hydrolysis and alcoholysis reactions, thus increasing the alcoholyisis/hydrolysis ratio. To the best of our knowledge, this is the first report on the effect of DES and temperature on an enzyme in which structural studies made it possible to establish the temperature limit for a thermostable enzyme in DES.


Assuntos
Proteínas de Bactérias/metabolismo , Glicosídeos/metabolismo , Solventes/química , Thermotoga maritima/enzimologia , alfa-Amilases/metabolismo , Proteínas de Bactérias/química , Biocatálise , Colina/química , Dicroísmo Circular , Estabilidade Enzimática , Temperatura Alta , Ligação de Hidrogênio , Hidrólise , Metanol/química , Conformação Proteica , Ureia/química , alfa-Amilases/química
13.
J Agric Food Chem ; 67(37): 10392-10400, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31461615

RESUMO

The specificity of fructooligosaccharides as prebiotics depends on their size and structure, which in turn depend on their origin or the synthesis procedure. In this work we describe the application of an inulosucrase (IslA) from Leuconostoc citreum CW28 to produce high molecular weight inulin from sucrose alongside a commercial endoinulinase (Novozym 960) produced by Aspergillus niger for a simultaneous or sequential reaction to synthesize fructooligosaccharides (FOS). The simultaneous reaction resulted in a higher substrate conversion and a wide diversity of FOS when compared to the sequential reaction. A shotgun MS analysis of the commercial endoinulinase preparation surprisingly revealed an additional enzymatic activity: a fructosyltransferase, responsible for the synthesis of FOS from sucrose. Consequentially, the range of FOS obtained in reactions combining inulosucrase from Ln. citreum with the fructosyltransferase and endoinulinase from A. niger with sucrose as substrate may be extended and regulated.


Assuntos
Proteínas de Bactérias/química , Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Hexosiltransferases/química , Inulina/química , Leuconostoc/enzimologia , Oligossacarídeos/química , Aspergillus niger/enzimologia , Biocatálise , Sacarose/química
14.
Carbohydr Polym ; 219: 130-142, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31151510

RESUMO

The physicochemical properties and biological activity of levan, a generic term given to oligo- and polysaccharides consisting of fructose units linked predominantly by ß(2-6) bonds, are attributable to both its size and structural complexity. Branching in ß(2-1) contributes to diversify levan structures and properties. There is a broad spectrum of applications for levan and accordingly it has been the subject of several comprehensive reviews. A thorough analysis focused on the product specificity of enzymes from the Glycoside-Hydrolase family 68 that synthesize levan is however missing. We analyze here traditional and novel strategies to manipulate bacterial levansucrases in favor of the generation of low- or high-molecular weight levan, including site directed mutagenesis and chemical engineering. A comparison of highly variable structural elements of levansucrases is presented in the context of their capacity to synthesize saccharides of different sizes, employing the levansucrases from Bacillus subtilis and Bacillus megaterium as references.


Assuntos
Bacillus megaterium/metabolismo , Bacillus subtilis/metabolismo , Frutanos , Hexosiltransferases/genética , Engenharia Química , Frutanos/química , Frutanos/metabolismo , Peso Molecular , Mutagênese Sítio-Dirigida
15.
Enzyme Microb Technol ; 125: 53-62, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30885325

RESUMO

The thermostable ß-fructosidase (BfrA) from the bacterium Thermotoga maritima converts sucrose into glucose, fructose, and low levels of short-chain fructooligosaccharides (FOS) at high substrate concentration (1.75 M) and elevated temperatures (60-70 °C). In this research, FOS produced by BfrA were characterized by HPAE-PAD analysis as a mixture of 1-kestotriose, 6G-kestotriose (neokestose), and to a major extent 6-kestotriose. In order to increase the FOS yield, three BfrA mutants (W14Y, W14Y-N16S and W14Y-W256Y), designed from sequence divergence between hydrolases and transferases, were constructed and constitutively expressed in the non-saccharolytic yeast Pichia pastoris. The secreted recombinant glycoproteins were purified and characterized. The three mutants synthesized 6-kestotriose as the major component of a FOS mixture that includes minor amounts of tetra- and pentasaccharides. In all cases, sucrose hydrolysis was the predominant reaction. All mutants reached a similar overall FOS yield, with the average value 37.6% (w/w) being 3-fold higher than that of the wild-type enzyme (12.6%, w/w). None of the mutations altered the enzyme thermophilicity and thermostability. The single mutant W14Y, with specific activity of 841 U mg-1, represents an attractive candidate for the continuous production of FOS-containing invert syrup at pasteurization temperatures.


Assuntos
Proteínas de Bactérias/metabolismo , Oligossacarídeos/biossíntese , Thermotoga maritima/enzimologia , beta-Frutofuranosidase/metabolismo , Proteínas de Bactérias/genética , Domínio Catalítico , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Oligossacarídeos/química , Pichia/genética , Pichia/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Sacarose/metabolismo , Temperatura , Thermotoga maritima/genética , beta-Frutofuranosidase/genética
16.
Food Chem ; 285: 204-212, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797336

RESUMO

Prebiotic fructooligosaccharides (FOS) are currently obtained by enzymatic reaction with fructosyltransferases (FTFs) using sucrose as both donor and acceptor. In these reactions glucose results as the most abundant by-product, arising from each fructosyl transfer event and, together with fructose, because of the inherent hydrolytic activity of the FTFs. As FOS are mainly used as prebiotic in nutraceutical foods, the reduction or total elimination of monosaccharides is required. In this work the selective elimination of monosaccharides from a synthetic FOS mixture was achieved through the selective complexation of glucose and fructose with phenyl boronic acid (PBAc) followed by ethyl-acetate extraction. The process was applied to a complex mixture of FOS obtained in an enzymatic synthesis reaction containing 40% glucose, 15.8% fructose and 35% of FOS, elimination of the sugars was achieved through 3:1 molar reactions, resulting in a levan-type FOS product with 97% purity.


Assuntos
Ácidos Borônicos/metabolismo , Monossacarídeos/metabolismo , Oligossacarídeos/isolamento & purificação , Acetatos/química , Ácidos Borônicos/química , Cromatografia em Camada Fina , Escherichia coli/metabolismo , Frutose/química , Glucose/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Extração Líquido-Líquido , Monossacarídeos/química , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Prebióticos/análise , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
17.
Sci Rep ; 8(1): 15035, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301900

RESUMO

Under specific reaction conditions, levansucrase from Bacillus subtilis (SacB) catalyzes the synthesis of a low molecular weight levan through the non-processive elongation of a great number of intermediates. To deepen understanding of the polymer elongation mechanism, we conducted a meticulous examination of the fructooligosaccharide profile evolution during the levan synthesis. As a result, the formation of primary and secondary intermediates series in different reaction stages was observed. The origin of the series was identified through comparison with product profiles obtained in acceptor reactions employing levanbiose, blastose, 1-kestose, 6-kestose, and neo-kestose, and supported with the isolation and NMR analyses of some relevant products, demonstrating that all of them are inherent products during levan formation from sucrose. These results allowed to establish the network of fructosyl transfer reactions involved in the non-processive levan synthesis. Overall, our results reveal how the relaxed acceptor specificity of SacB during the initial steps of the synthesis is responsible for the formation of several levan series, which constitute the final low molecular weight levan distribution.


Assuntos
Bacillus subtilis/enzimologia , Frutanos/biossíntese , Hexosiltransferases/metabolismo , Sacarose/metabolismo , Catálise , Dissacaridases/metabolismo , Dissacarídeos/metabolismo , Frutanos/metabolismo , Hexosiltransferases/química , Hexosiltransferases/genética , Cinética , Peso Molecular , Oligossacarídeos/biossíntese , Oligossacarídeos/metabolismo , Sacarose/química , Trissacarídeos/metabolismo
18.
Genome Announc ; 5(48)2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192074

RESUMO

Leuconostoc citreum CW28 was isolated from pozol, a Mayan fermented corn beverage. This strain produces a cell-associated inulosucrase, the first described in bacteria. Its draft genome sequence, announced here, has an estimated size of 1.98 Mb and harbors 1,915 coding genes, 12 rRNAs, 68 tRNAs, 17 putative pseudogenes, and 1 putative phage.

19.
Carbohydr Polym ; 177: 40-48, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28962785

RESUMO

We describe here the enzymatic production of levan type-fructooligosaccharides (L-FOS) with a DP from 2 to 10, through simultaneous synthesis and hydrolysis reactions. This was accomplished by LevB1SacB, a new enzyme resulting from the fusion of SacB, a levansucrase from Bacillus subtilis and LevB1, an endolevanase from B. licheniformis. In the fusion enzyme, SacB retains its catalytic behavior with a decrease in kcat from 164 to 108s-1. LevB1 in LevB1SacB kinetic behavior improves considerably reaching saturation with levan and following Michaelis-Menten kinetics, quite differently from the previously reported first order kinetic behavior. We also report that LevB1SacB or both enzymes (LevB1 & SacB) at equimolar concentrations in simultaneous reactions result in an optimal, wide and diverse L-FOS profile, including 6-kestose, levanbiose and blastose among other L-FOS and 1-kestose, which accumulates as by-product of SacB levan synthesis. Yields of around 40% (w/w) were obtained from 600g/l sucrose with either LevB1SacB or LevB1 & SacB. The reaction was successfully scaled up to a stirred 2l bioreactor.


Assuntos
Glicosídeo Hidrolases/metabolismo , Hexosiltransferases/metabolismo , Oligossacarídeos/síntese química , Frutanos/química , Oligossacarídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sacarose/metabolismo
20.
Food Chem ; 227: 202-210, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28274423

RESUMO

Blastose, a natural disaccharide found in honey, is usually found as a byproduct of fructo-oligosaccharide synthesis from sucrose with fructosyltransferases. In this study, we describe a novel two-step biosynthetic route to obtain blastose, designed from a detailed observation of B. subtilis levansucrase (SacB) acceptor structural requirements for fructosylation. The strategy consisted first in the synthesis of the trisaccharide O-ß-d-Fruf-(2↔6)-O-α-d-Glcp-(1↔1)-α-d-Glcp, through a regioselective ß-d-transfructosylation of trehalose (Tre) which acts as acceptor in a reaction catalyzed by SacB using sucrose or levan as fructosyl donor. In this reaction, levansucrase (LS) transfers regioselectively a fructosyl residue to either C6-OH group of the glucose residues in Tre. The resulting trisaccharide obtained in 23% molar yield based on trehalose, was purified and fully characterized by extensive NMR studies. In the second step, the trisaccharide is specifically hydrolyzed by trehalase, to obtain blastose in 43.2% molar yield based on the trisaccharide. This is the first report describing the formation of blastose through a sequential transfuctosylation-hydrolysis reaction.


Assuntos
Dissacaridases/metabolismo , Hexosiltransferases/metabolismo , Trealose/metabolismo , Trissacarídeos/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Frutanos/metabolismo , Hidrólise , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA