Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902322

RESUMO

The reciprocal connectivity between the medial prefrontal cortex (mPFC) and the dorsal raphe nucleus (DR) is involved in mood control and resilience to stress. The infralimbic subdivision (IL) of the mPFC is the rodent equivalent of the ventral anterior cingulate cortex, which is intimately related to the pathophysiology/treatment of major depressive disorder (MDD). Boosting excitatory neurotransmission in the IL-but not in the prelimbic cortex, PrL-evokes depressive-like or antidepressant-like behaviors in rodents, which are associated with changes in serotonergic (5-HT) neurotransmission. We therefore examined the control of 5-HT activity by both of the mPFC subdivisions in anesthetized rats. The electrical stimulation of IL and PrL at 0.9 Hz comparably inhibited 5-HT neurons (53% vs. 48%, respectively). However, stimulation at higher frequencies (10-20 Hz) revealed a greater proportion of 5-HT neurons sensitive to IL than to PrL stimulation (86% vs. 59%, at 20 Hz, respectively), together with a differential involvement of GABAA (but not 5-HT1A) receptors. Likewise, electrical and optogenetic stimulation of IL and PrL enhanced 5-HT release in DR in a frequency-dependent manner, with greater elevations after IL stimulation at 20 Hz. Hence, IL and PrL differentially control serotonergic activity, with an apparent superior role of IL, an observation that may help to clarify the brain circuits involved in MDD.


Assuntos
Transtorno Depressivo Maior , Núcleo Dorsal da Rafe , Ratos , Animais , Córtex Cerebral , Neurônios , Córtex Pré-Frontal/fisiologia
2.
Cereb Cortex ; 32(14): 3000-3013, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35848862

RESUMO

The infralimbic (IL) cortex is the rodent equivalent of human ventral anterior cingulate cortex (vACC), which plays a key role in the pathophysiology and treatment of major depressive disorder (MDD). The modulation of glutamatergic neurotransmission in IL [but not in the adjacent prelimbic (PrL) cortex] evokes antidepressant-like or depressive-like behaviors, associated with changes in serotonin (5-HT) function, highlighting the relevance of glutamate/serotonin interactions in IL for emotional control. 5-HT modulates neuronal activity in PrL and cingulate (Cg) cortex but its effects in IL are largely unknown. We therefore compared the in vivo effects of 5-HT on pyramidal neuron activity in IL (n = 61) and PrL (n = 50) of anesthetized rats. IL pyramidal neurons were more responsive to physiological dorsal raphe stimulation (0.9 Hz) than PrL neurons (84% vs. 64%, respectively) and were inhibited to a greater extent (64% vs. 36%, respectively). Orthodromic activations (8% in PrL) were absent in IL, whereas biphasic responses were similar (20%) in both areas. Excitations were mediated by 5-HT2A-R activation, whereas inhibitions involved 3 different components: 5-HT1A-R, 5-HT3-R and GABAA-R, respectively. The remarkable inhibitory action of 5-HT in IL suggests that 5-HT-enhancing drugs may exert their antidepressant action by normalizing a glutamatergic hyperactivity in the vACC of MDD patients.


Assuntos
Transtorno Depressivo Maior , Serotonina , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Córtex Cerebral , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Células Piramidais/fisiologia , Ratos
3.
Mol Cell Neurosci ; 121: 103750, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35697176

RESUMO

The central serotonin2B receptor (5-HT2BR) modulates 5-HT and dopamine (DA) neuronal function in the mammalian brain and has been suggested as a potential target for the treatment of neuropsychiatric disorders involving derangements of these monoamine systems, such as schizophrenia, cocaine abuse and dependence and major depressive disorder. Studies in rats and mice yielded contrasting results on the control of 5-HT/DA networks by 5-HT2BRs, thereby leading to opposite views on the therapeutic potential of 5-HT2BR agents for treating the above disorders. These discrepancies may result from anatomo-functional differences related to a different cellular location of 5-HT2BRs in rat and mouse brain. Using immunohistochemistry, we assessed this hypothesis by examining the expression of 5-HT2BRs in 5-HT and GABAergic neurons of rats and mice within different subregions of the dorsal raphe nucleus (DRN), currently considered as the main site of action of 5-HT2B agents. Likewise, using in vivo microdialysis, we examined their functional relevance in the control of DRN 5-HT outflow, a surrogate index of 5-HT neuronal activity. In the DRN of both species, 5-HT2BRs are expressed in 5-HT cells expressing tryptophan hydroxylase 2 (TPH2), in GABAergic cells expressing glutamic acid decarboxylase 67 (GAD67), and in cells expressing both markers (GAD67 & TPH2; i.e., GABA-expressing 5-HT neurons). The proportion of 5-HT2BR-positive cells expressing only TPH2 was significantly larger in mouse than in rat DRN, whereas the opposite holds true for the expression in cells expressing GAD67 & TPH2. No major species differences were found in the dorsal and ventral subregions. In contrast, the lateral subregion exhibited large differences, with a predominant expression of 5-HT2BRs in TPH2-positive cells in mice (67.2 vs 19.9 % in rats), associated with a lower expression in GAD67 & TPH2 cells (7.9 % in mice vs 41.5 % in rats). Intra-DRN (0.1 µM) administration of the preferential 5-HT2BR agonist BW 723C86 decreased and increased DRN 5-HT outflow in rats and mice respectively, both effects being prevented by the intra-DRN perfusion of the selective 5-HT2BR antagonist RS 127445 (0.1 µM). Altogether, these results show the existence of anatomical differences in the cellular expression of 5-HT2BRs in the rat and mouse DRN, which translate into an opposite control of 5-HT outflow. Also, they highlight the relevance of the subset of GAD67-positive 5-HT neurons as a key factor responsible for the functional differences between rats and mice in terms of 5-HT neuronal activity modulation.


Assuntos
Núcleo Dorsal da Rafe , Receptor 5-HT2B de Serotonina , Neurônios Serotoninérgicos , Animais , Núcleo Dorsal da Rafe/metabolismo , Camundongos , Ratos , Receptor 5-HT2B de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA