Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 4005, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778658

RESUMO

Surface temperature is a fundamental parameter of Earth's climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.

2.
Sci Rep ; 10(1): 7989, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409728

RESUMO

Reconstructing long-term continental temperature change provides the required counterpart to age equivalent marine records and can reveal how terrestrial and marine temperatures were related during times of extreme climate change such as the Miocene Climatic Optimum (MCO) and the following Middle Miocene Climatic Transition (MMCT). Carbonate clumped isotope temperatures (T(Δ47)) from 17.5 to 14.0 Ma Central European paleosols (Molasse Basin, Switzerland) display a temperature pattern during the MCO that is similar to coeval marine temperature records. Maximum temperatures in the long-term soil T(Δ47) record (at 16.5 and 14.9 Ma) lag maximum ocean bottom water temperatures, lead global ice volume, and mark the initiation of minimum global ice volume phases. The suggested onset of the MMCT, deduced by a marked and rapid decline in Molasse Basin soil temperatures is coeval with cooling reported in high-latitudinal marine records. This is best explained by a change in the seasonal timing of soil carbonate formation that was likely driven by a modification of rainfall seasonality and thus by a major reorganization of mid-latitude atmospheric circulation across Central Europe. In particular, our data suggest a strong climate coupling between the North Atlantic and Central Europe already in the middle Miocene.

3.
Sci Rep ; 8(1): 533, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323253

RESUMO

Brachiopod shells are the most widely used geological archive for the reconstruction of the temperature and the oxygen isotope composition of Phanerozoic seawater. However, it is not conclusive whether brachiopods precipitate their shells in thermodynamic equilibrium. In this study, we investigated the potential impact of kinetic controls on the isotope composition of modern brachiopods by measuring the oxygen and clumped isotope compositions of their shells. Our results show that clumped and oxygen isotope compositions depart from thermodynamic equilibrium due to growth rate-induced kinetic effects. These departures are in line with incomplete hydration and hydroxylation of dissolved CO2. These findings imply that the determination of taxon-specific growth rates alongside clumped and bulk oxygen isotope analyses is essential to ensure accurate estimates of past ocean temperatures and seawater oxygen isotope compositions from brachiopods.

4.
Isotopes Environ Health Stud ; 52(1-2): 12-28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25685933

RESUMO

It is well known that a subtle nonlinearity can occur during clumped isotope analysis of CO2 that - if remaining unaddressed - limits accuracy. The nonlinearity is induced by a negative background on the m/z 47 ion Faraday cup, whose magnitude is correlated with the intensity of the m/z 44 ion beam. The origin of the negative background remains unclear, but is possibly due to secondary electrons. Usually, CO2 gases of distinct bulk isotopic compositions are equilibrated at 1000 °C and measured along with the samples in order to be able to correct for this effect. Alternatively, measured m/z 47 beam intensities can be corrected for the contribution of secondary electrons after monitoring how the negative background on m/z 47 evolves with the intensity of the m/z 44 ion beam. The latter correction procedure seems to work well if the m/z 44 cup exhibits a wider slit width than the m/z 47 cup. Here we show that the negative m/z 47 background affects precision of dual inlet-based clumped isotope measurements of CO2 unless raw m/z 47 intensities are directly corrected for the contribution of secondary electrons. Moreover, inaccurate results can be obtained even if the heated gas approach is used to correct for the observed nonlinearity. The impact of the negative background on accuracy and precision arises from small imbalances in m/z 44 ion beam intensities between reference and sample CO2 measurements. It becomes the more significant the larger the relative contribution of secondary electrons to the m/z 47 signal is and the higher the flux rate of CO2 into the ion source is set. These problems can be overcome by correcting the measured m/z 47 ion beam intensities of sample and reference gas for the contributions deriving from secondary electrons after scaling these contributions to the intensities of the corresponding m/z 49 ion beams. Accuracy and precision of this correction are demonstrated by clumped isotope analysis of three internal carbonate standards. The proposed correction scheme can be easily applied if the slit width of the m/z 49 Faraday cup is bigger than that of the m/z 47 cup.


Assuntos
Dióxido de Carbono/análise , Carbono/análise , Carbonatos/análise , Espectrometria de Massas/métodos , Oxigênio/análise , Isótopos de Carbono/análise , Isótopos de Oxigênio/análise , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA