Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(4): e17265, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38214370

RESUMO

Urbanization is rapidly shaping and transforming natural environments, creating networks of modified land types. These urbanization-driven modifications lead to local extinctions of several species, but the surviving ones also face numerous novel selection pressures, including exposure to pollutants, habitat alteration, and shifts in food availability and diversity. Based on the assumption that the environmental pool of microorganisms is reduced in urban habitats due to habitat alteration, biodiversity loss, and pollution, we hypothesized that the diversity of bacterial microbiome in digestive tracts of arthropods would be lower in urban than rural habitats. Investigating the gut bacterial communities of a specialist ground beetle, Carabus convexus, in forested rural versus urban habitats by next generation high-throughput sequencing of the bacterial 16S rRNA gene, we identified 3839 bacterial amplicon sequence variants. The composition of gut bacterial samples did not significantly differ by habitat (rural vs. urban), sex (female vs. male), sampling date (early vs. late spring), or their interaction. The microbiome diversity (evaluated by the Rényi diversity function), however, was higher in rural than urban adults. Our findings demonstrate that urbanization significantly reduced the diversity of the gut bacterial microbiome in C. convexus.


Assuntos
Besouros , Microbioma Gastrointestinal , Microbiota , Animais , Masculino , Feminino , Urbanização , Microbioma Gastrointestinal/genética , Besouros/genética , RNA Ribossômico 16S/genética , Ecossistema , Biodiversidade , Bactérias/genética
2.
Nat Ecol Evol ; 8(2): 251-266, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182682

RESUMO

The biodiversity impacts of agricultural deforestation vary widely across regions. Previous efforts to explain this variation have focused exclusively on the landscape features and management regimes of agricultural systems, neglecting the potentially critical role of ecological filtering in shaping deforestation tolerance of extant species assemblages at large geographical scales via selection for functional traits. Here we provide a large-scale test of this role using a global database of species abundance ratios between matched agricultural and native forest sites that comprises 71 avian assemblages reported in 44 primary studies, and a companion database of 10 functional traits for all 2,647 species involved. Using meta-analytic, phylogenetic and multivariate methods, we show that beyond agricultural features, filtering by the extent of natural environmental variability and the severity of historical anthropogenic deforestation shapes the varying deforestation impacts across species assemblages. For assemblages under greater environmental variability-proxied by drier and more seasonal climates under a greater disturbance regime-and longer deforestation histories, filtering has attenuated the negative impacts of current deforestation by selecting for functional traits linked to stronger deforestation tolerance. Our study provides a previously largely missing piece of knowledge in understanding and managing the biodiversity consequences of deforestation by agricultural deforestation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Filogenia , Florestas , Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA