Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931927

RESUMO

The barrier function of the skin is primarily determined by its outermost layer, the Stratum Corneum (SC). The SC consists of corneocytes embedded in a lipid matrix composed mainly of ceramides, cholesterol, and free fatty acids in equimolar proportions and is organised in a complex lamellar structure with different periodicities and lateral packings. This matrix provides a diffusion pathway across the SC for bioactive compounds that are administered to the skin. In this regard, and as the skin administration route has grown in popularity, there has been an increase in the use of lipid mixtures that closely resemble the SC lipid matrix, either for a deeper biophysical understanding or for pharmaceutical and cosmetic purposes. This review focuses on a systematic analysis of the main outcomes of using lipid mixtures as SC lipid matrix models for pharmaceutical and cosmetic purposes. Thus, a methodical evaluation of the main outcomes based on the SC structure is performed, as well as the main recent developments in finding suitable new in vitro tools for permeation testing based on lipid models.

2.
Adv Drug Deliv Rev ; 210: 115321, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38679293

RESUMO

Posterior eye disorders, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, have a significant impact on human quality of life and are the primary cause of age-related retinal diseases among adults. There is a pressing need for innovative topical approaches to treat posterior eye disorders, as current methods often rely on invasive procedures with inherent risks. Limited success was attained in the realm of topical ophthalmic delivery through non-invasive means. Additionally, there exists a dearth of literature that delves into the potential of this approach for drug delivery and theranostic purposes, or that offers comprehensive design strategies for nanocarrier developers to surmount the significant physiological ocular barriers. This review offers a thorough and up-to-date state-of-the-art overview of 40 studies on therapeutic loaded nanocarriers and theranostic devices that, to the best of our knowledge, represent all successful works that reached posterior eye segments through a topical non-invasive administration. Most importantly, based on the successful literature studies, this review provides a comprehensive summary of the potential design strategies that can be implemented during nanocarrier development to overcome each ocular barrier.


Assuntos
Portadores de Fármacos , Nanomedicina Teranóstica , Humanos , Portadores de Fármacos/química , Nanomedicina Teranóstica/métodos , Nanopartículas , Animais , Sistemas de Liberação de Medicamentos , Oftalmopatias/tratamento farmacológico , Administração Oftálmica , Administração Tópica
3.
Eur J Pharm Sci ; 196: 106758, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570054

RESUMO

Increasing evidence suggests a beneficial role of vitamin D (VitD) supplementation in addressing the widespread VitD deficiency, but currently used VitD3 formulations present low bioavailability and toxicity constrains. Hence, poly(L-lactide-co-glycolide) (PLGA) nanoparticles (NPs), solid-lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were investigated to circumvent these issues. PLGA NPs prepared by emulsification or nanoprecipitation presented 74 or 200 nm, and association efficiency (AE) of 68 % and 17 %, respectively, and a rapid burst release of VitD3. Both SLN and NLCs presented higher polydispersity and larger NPs size, around 500 nm, which could be reduced to around 200 nm by use of hot high-pressure homogenization in the case of NLCs. VitD3 was efficiently loaded in both SLNs and NLCs with an AE of 82 and 99 %, respectively. While SLNs showed burst release, NLCs allowed a sustained release of VitD3 for nearly one month. Furthermore, NLCs showed high stability with maintenance of VitD3 loading for up to one month at 4 °C and no cytotoxic effects on INS-1E cells up to 72 h. A trending increase (around 30 %) on glucose-dependent insulin secretion was observed by INS-1E cells pre-treated with VitD3. This effect was consistently observed in the free form and after loading on NLCs. Overall, this work contributed to further elucidation on a suitable delivery system for VitD3 and on the effects of this metabolite on ß cell function.

4.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189011, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37923232

RESUMO

Cancer remains a leading cause of mortality. Despite significant breakthroughs in conventional therapies, treatment is still far from ideal due to high toxicity in normal tissues and therapeutic inefficiency caused by short drug lifetime in the body and resistance mechanisms. Current research moves towards the development of multifunctional nanosystems for delivery of chemotherapeutic drugs, bioactives and/or radionuclides that can be combined with other therapeutic modalities, like gene therapy, or imaging to use in therapeutic screening and diagnosis. The preparation and characterization of Lyotropic Liquid Crystalline (LLC) mesophases self-assembled as 2D and 3D structures are addressed, with an emphasis on the unique properties of these nanoassemblies. A comprehensive review of LLC nanoassemblies is also presented, highlighting the most recent advances and their outstanding advantages as drug delivery systems, including tailoring strategies that can be used to overcome cancer challenges. Therapeutic agents loaded in LLC nanoassemblies offer qualitative and quantitative enhancements that are superior to conventional chemotherapy, particularly in terms of preferential accumulation at tumor sites and promoting enhanced cancer cell uptake, lowering tumor volume and weight, improving survival rates, and increasing the cytotoxicity of their loaded therapeutic agents. In terms of quantitative anticancer efficacy, loaded LLC nanoassemblies reduced the IC50 values from 1.4-fold against lung cancer cells to 125-fold against ovarian cancer cells.


Assuntos
Cristais Líquidos , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Cristais Líquidos/química
5.
Pharmaceutics ; 15(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37631292

RESUMO

Chronic skin exposure to external hostile agents (e.g., UV radiation, microorganisms, and oxidizing chemicals) may increase oxidative stress, causing skin damage and aging. Because of their well-known skincare and protective benefits, quercetin (Q) and omega-3 fatty acids (ω3) have attracted the attention of the dermocosmetic and pharmaceutical sectors. However, both bioactives have inherent properties that limit their efficient skin delivery. Therefore, nanostructured lipid carriers (NLCs) and enriched PFC® hydrogels (HGs) have been developed as a dual-approach vehicle for Q and/or ω3 skin topical administration to improve bioactives' stability and skin permeation. Two NLC formulations were prepared with the same lipid composition but differing in surfactant composition (NLC1-soy lecithin and poloxamer 407; NLC2-Tween® 80 and dioctyl sodium sulfosuccinate (DOSS)), which have an impact on physicochemical properties and pharmaceutical and therapeutic performance. Despite both NLCs presenting high Q loading capacity, NLC2's physicochemical properties make them more suitable for topical skin administration and ensure longer colloidal stability. Additionally, NLC2 demonstrated a more sustained Q release, indicating higher bioactive storage while improving permeability. The occlusive effect of NLCs-enriched HGs also has a positive impact on skin permeability. Q-loaded NLC2, with or without ω3, -enriched HGs demonstrated efficacy as antioxidant and photoprotective formulations as well as effective reduction in S. aureus growth, indicating that they constitute a promising approach for topical skin administration to prevent skin aging and other damaging cutaneous processes.

6.
Pharmaceutics ; 15(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111802

RESUMO

Cancer is one of the leading causes of death, and latest predictions indicate that cancer- related deaths will increase over the next few decades. Despite significant advances in conventional therapies, treatments remain far from ideal due to limitations such as lack of selectivity, non-specific distribution, and multidrug resistance. Current research is focusing on the development of several strategies to improve the efficiency of chemotherapeutic agents and, as a result, overcome the challenges associated with conventional therapies. In this regard, combined therapy with natural compounds and other therapeutic agents, such as chemotherapeutics or nucleic acids, has recently emerged as a new strategy for tackling the drawbacks of conventional therapies. Taking this strategy into consideration, the co-delivery of the above-mentioned agents in lipid-based nanocarriers provides some advantages by improving the potential of the therapeutic agents carried. In this review, we present an analysis of the synergistic anticancer outcomes resulting from the combination of natural compounds and chemotherapeutics or nucleic acids. We also emphasize the importance of these co-delivery strategies when reducing multidrug resistance and adverse toxic effects. Furthermore, the review delves into the challenges and opportunities surrounding the application of these co-delivery strategies towards tangible clinical translation for cancer treatment.

7.
Pharmaceutics ; 15(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36839648

RESUMO

Current needs for increased drug delivery carrier efficacy and specificity in cancer necessitate the adoption of intelligent materials that respond to environmental stimuli. Therefore, we developed and optimized pH-triggered drug delivery nanoassemblies that exhibit an increased release of doxorubicin (DOX) in acidic conditions typical of cancer tissues and endosomal vesicles (pH 5.5) while exhibiting significantly lower release under normal physiological conditions (pH 7.5), indicating the potential to reduce cytotoxicity in healthy cells. The hybrid (polymeric/lipid) composition of the lyotropic non-lamellar liquid crystalline (LNLCs) nanoassemblies demonstrated high encapsulation efficiency of the drug (>90%) and high drug loading content (>7%) with colloidal stability lasting at least 4 weeks. Confocal microscopy revealed cancer cellular uptake and DOX-loaded LNLCs accumulation near the nucleus of human hepatocellular carcinoma cells, with a large number of cells appearing to be in apoptosis. DOX-loaded LNLCs have also shown higher citotoxicity in cancer cell lines (MDA-MB 231 and HepG2 cell lines after 24 h and in NCI-H1299 cell line after 48 h) when compared to free drug. After 24 h, free DOX was found to have higher cytotoxicity than DOX-loaded LNLCs and empty LNLCs in the normal cell line. Overall, the results demonstrate that DOX-loaded LNLCs have the potential to be explored in cancer therapy.

8.
J Control Release ; 349: 731-743, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35905784

RESUMO

Colorectal cancer (CRC) is a heterogeneous disease with high incidence and mortality worldwide. The efficacy of conventional CRC chemotherapy is hampered by poor drug solubility and bioavailability and suboptimal pharmacokinetic profiles. In this work, camptothecin (CPT), a potent anticancer drug, was loaded into an amphiphilic chitosan modified with PEG and oleic acid, to reduce CRC progression after oral administration. While CPT-loaded micelles presented anticancer activity against HCT116, Caco-2 and HT29 CRC cell lines in vitro, empty micelles demonstrated a safe profile when incubated with human blood cells and colorectal cancer cell lines. In a more complex 3D CRC multicellular spheroid model, CPT-loaded micelles also exhibited a significant effect on the spheroid's metabolic activity and size reduction. Remarkably, in vivo studies performed in a HCT116 xenograft model, showed a significant reduction on the tumor growth during and after treatment with CPT-loaded micelles. Moreover, in a more biological relevant in vivo model of chemically-induced CRC, orally administered CPT-loaded micelles demonstrated a significant reduction on tumor incidence and inflammation signs. The findings here reported indicate that CPT-loaded into chitosan-based micelles, by improving drug solubility, alongside its safety profile for normal tissues, may have a promising role CRC chemotherapy.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Quitosana , Neoplasias Colorretais , Antineoplásicos/uso terapêutico , Células CACO-2 , Camptotecina , Linhagem Celular Tumoral , Quitosana/uso terapêutico , Neoplasias Colorretais/patologia , Portadores de Fármacos/uso terapêutico , Humanos , Micelas , Ácido Oleico
9.
Pharmaceutics ; 13(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34452163

RESUMO

Resveratrol (RSV) and omega 3 (ω3), because of their biological favorable properties, have become subjects of interest for researchers in dermocosmetic and pharmaceutical industries; however, these bioactives present technological limitations that hinder their effective delivery to the target skin layer. To overcome the stability and skin permeation limitations of free bioactives, this work proposes a combined strategy involving two different lipid nanosystems (liposomes and lipid nanoparticles) that include ω3 in their lipid matrix. Additionaly, RSV is only encapsulated in liposomes that provid an adequate amphiphilic environment. Each formulation is thoroughly characterized regarding their physical-chemical properties. Subsequently, the therapeutic performance of the lipid nanosystems is evaluated based on their protective roles against lipid peroxidation, as well as inhibition of cicloxygenase (COX) and nitric oxid (NO) production in the RWA264.7 cell line. Finally, the lipid nanosystems are incorporated in hydrogel to allow their topical administration, then rheology, occlusion, and RSV release-diffusion assays are performed. Lipid nanoparticles provide occlusive effects at the skin surface. Liposomes provide sustained RSV release and their flexibility conferred by edge activator components enhances RSV diffusion, which is required to reach NO production cells and COX cell membrane enzymes. Overall, the inclusion of both lipid nanosystems in the same semisolid base constitutes a promising strategy for autoimmune, inflammatory, and cancerous skin diseases.

10.
Pharmaceutics ; 13(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34452255

RESUMO

Since HIV was first identified, and in a relatively short period of time, AIDS has become one of the most devastating infectious diseases of the 21st century. Classical antiretroviral therapies were a major step forward in disease treatment options, significantly improving the survival rates of HIV-infected individuals. Even though these therapies have greatly improved HIV clinical outcomes, antiretrovirals (ARV) feature biopharmaceutic and pharmacokinetic problems such as poor aqueous solubility, short half-life, and poor penetration into HIV reservoir sites, which contribute to the suboptimal efficacy of these regimens. To overcome some of these issues, novel nanotechnology-based strategies for ARV delivery towards HIV viral reservoirs have been proposed. The current review is focused on the benefits of using lipid-based nanocarriers for tuning the physicochemical properties of ARV to overcome biological barriers upon administration. Furthermore, a correlation between these properties and the potential therapeutic outcomes has been established. Biotechnological advancements using lipid nanocarriers for RNA interference (RNAi) delivery for the treatment of HIV infections were also discussed.

11.
Pharmaceutics ; 13(6)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204692

RESUMO

Camptothecin (CPT) is a potent anticancer drug, and its putative oral administration is envisioned although difficult due to physiological barriers that must be overcome. A comprehensive biophysical analysis of CPT interaction with biointerface models can be used to predict some pharmacokinetic issues after oral administration of this or other drugs. To that end, different models were used to mimic the phospholipid composition of normal, cancer, and blood-brain barrier endothelial cell membranes. The logD values obtained indicate that the drug is well distributed across membranes. CPT-membrane interaction studies also confirm the drug's location at the membrane cooperative and interfacial regions. The drug can also permeate membranes at more ordered phases by altering phospholipid packing. The similar logD values obtained in membrane models mimicking cancer or normal cells imply that CPT has limited selectivity to its target. Furthermore, CPT binds strongly to serum albumin, leaving only 8.05% of free drug available to be distributed to the tissues. The strong interaction with plasma proteins, allied to the large distribution (VDSS = 5.75 ± 0.932 L·Kg-1) and tendency to bioaccumulate in off-target tissues, were predicted to be pharmacokinetic issues of CPT, implying the need to develop drug delivery systems to improve its biodistribution.

12.
J Control Release ; 334: 453-462, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33961916

RESUMO

Women are particularly vulnerable to sexual HIV-1 transmission. Oral pre-exposure prophylaxis (PrEP) with tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) is highly effective in avoiding new infections in men, but protection has only been shown to be moderate in women. Such differences have been associated, at least partially, to poor drug penetration of the lower female genital tract and the need for strict adherence to continuous daily oral intake of TDF/FTC. On-demand topical microbicide products could help circumvent these limitations. We developed electrospun fibers based on polycaprolactone (PCL fibers) or liposomes associated to poly(vinyl alcohol) (liposomes-in-PVA fibers) for the vaginal co-delivery of TDF and FTC, and assessed their pharmacokinetics in mice. PCL fibers and liposomes-in-PVA fibers were tested for morphological and physicochemical properties using scanning electron microscopy, differential scanning calorimetry and X-ray diffractometry. Fibers featured organoleptic and mechanical properties compatible with their suitable handling and vaginal administration. Fluorescent quenching of mucin in vitro - used as a proxy for mucoadhesion - was intense for PCL fibers, but mild for liposomes-in-PVA fibers. Both fibers were shown safe in vitro and able to rapidly release drug content (15-30 min) under sink conditions. Liposomes-in-PVA fibers allowed increasing genital drug concentrations after a single intravaginal administration when compared to continuous daily treatment for five days with 25-times higher oral doses. For instance, the levels of tenofovir and FTC in vaginal lavage were around 4- and 29-fold higher, respectively. PCL fibers were also superior to oral treatment, although to a minor extent (approximately 2-fold higher drug concentrations in lavage). Vaginal tissue drug levels were generally low for all treatments, while systemic drug exposure was negligible in the case of fibers. These data suggest that proposed fibers may provide an interesting alternative or an ancillary option to oral PrEP in women.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Profilaxia Pré-Exposição , Administração Intravaginal , Animais , Fármacos Anti-HIV/uso terapêutico , Emtricitabina , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Humanos , Camundongos , Tenofovir
13.
Nanotechnol Sci Appl ; 14: 7-27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603350

RESUMO

PURPOSE: AntiOxCIN3 is a novel mitochondriotropic antioxidant developed to minimize the effects of oxidative stress on neurodegenerative diseases. Prior to an investment in pre-clinical in vivo studies, it is important to apply in silico and biophysical cell-free in vitro studies to predict AntiOxCIN3 biodistribution profile, respecting the need to preserve animal health in accordance with the EU principles (Directive 2010/63/EU). Accordingly, we propose an innovative toolbox of biophysical studies and mimetic models of biological interfaces, such as nanosystems with different compositions mimicking distinct membrane barriers and human serum albumin (HSA). METHODS: Intestinal and cell membrane permeation of AntiOxCIN3 was predicted using derivative spectrophotometry. AntiOxCIN3 -HSA binding was evaluated by intrinsic fluorescence quenching, synchronous fluorescence, and dynamic/electrophoretic light scattering. Steady-state and time-resolved fluorescence quenching was used to predict AntiOxCIN3-membrane orientation. Fluorescence anisotropy, synchrotron small- and wide-angle X-ray scattering were used to predict lipid membrane biophysical impairment caused by AntiOxCIN3 distribution. RESULTS AND DISCUSSION: We found that AntiOxCIN3 has the potential to permeate the gastrointestinal tract. However, its biodistribution and elimination from the body might be affected by its affinity to HSA (>90%) and by its steady-state volume of distribution (VDSS =1.89± 0.48 L∙Kg-1). AntiOxCIN3 is expected to locate parallel to the membrane phospholipids, causing a bilayer stiffness effect. AntiOxCIN3 is also predicted to permeate through blood-brain barrier and reach its therapeutic target - the brain. CONCLUSION: Drug interactions with biological interfaces may be evaluated using membrane model systems and serum proteins. This knowledge is important for the characterization of drug partitioning, positioning and orientation of drugs in membranes, their effect on membrane biophysical properties and the study of serum protein binding. The analysis of these interactions makes it possible to collect valuable knowledge on the transport, distribution, accumulation and, eventually, therapeutic impact of drugs which may aid the drug development process.

14.
Mater Sci Eng C Mater Biol Appl ; 112: 110920, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409071

RESUMO

Chitosan was grafted with O-methyl-O'-succinylpolyethylene glycol and oleic acid after a two-step carbodiimide coupling. The structural and physicochemical characterization of the compounds confirmed the successful conjugation of the hydrophilic and hydrophobic moieties to the chitosan backbone. The amphiphilic chitosan derivative obtained allowed the formation of polymeric micelles with an average size of 140 nm, a polydispersity index <0.234, and a positive superficial charge. Camptothecin, used as a model hydrophobic drug, was successfully carried into the polymeric micelles with an encapsulation efficiency of 78%. The in vitro drug release was evaluated in simulated gastrointestinal fluids, exhibiting a low release of camptothecin in gastric media and a controlled release in intestinal fluids. Furthermore, it was demonstrated that chitosan micelles were able to stabilize camptothecin, protecting up to 75% of the drug from hydrolysis, preserving its active lactone form. This new chitosan amphiphilic system exhibits great potential to load hydrophobic drugs, acting as a promising delivery system.


Assuntos
Antineoplásicos/química , Quitosana/química , Portadores de Fármacos/química , Micelas , Antineoplásicos/metabolismo , Camptotecina/química , Camptotecina/metabolismo , Liberação Controlada de Fármacos , Ácido Gástrico/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ácido Oleico/química , Tamanho da Partícula , Polietilenoglicóis/química , Termodinâmica
15.
Int J Pharm ; 580: 119222, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32194209

RESUMO

Interactions of paclitaxel (PTX) with models mimicking biological interfaces (lipid membranes and serum albumin, HSA) were investigated to test the hypothesis that the set of in vitro assays proposed can be used to predict some aspects of drug pharmacokinetics (PK). PTX membrane partitioning was studied by derivative spectrophotometry; PTX effect on membrane biophysics was evaluated by dynamic light scattering, fluorescence anisotropy, atomic force microscopy and synchrotron small/wide-angle X-ray scattering; PTX distribution/molecular orientation in membranes was assessed by steady-state/time-resolved fluorescence and computer simulations. PTX binding to HSA was studied by fluorescence quenching, derivative spectrophotometry and dynamic/electrophoretic light scattering. PTX high membrane partitioning is consistent with its efficacy crossing cellular membranes and its off-target distribution. PTX is closely located in the membrane phospholipids headgroups, also interacting with the hydrophobic chains, and causes a major distortion of the alignment of the membrane phospholipids, which, together with its fluidizing effect, justifies some of its cellular toxic effects. PTX binds strongly to HSA, which is consistent with its reduced distribution in target tissues and toxicity by bioaccumulation. In conclusion, the described set of biomimetic models and techniques has the potential for early prediction of PK issues, alerting for the required drug optimizations, potentially minimizing the number of animal tests used in the drug development process.


Assuntos
Paclitaxel/farmacocinética , Albumina Sérica Humana/metabolismo , Membrana Celular/metabolismo , Portadores de Fármacos/metabolismo , Desenvolvimento de Medicamentos/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/metabolismo , Fosfolipídeos/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-31850337

RESUMO

Herpetic infections caused by Herpes simplex virus (HSV) are among the most common human infections, affecting more than two quarters of the world's population. The standard treatment for orofacial herpes is the administration of antiviral drugs, mainly acyclovir (ACV). However, current products are mostly based on semisolid formulations that have limited ability to promote drug skin penetration and tend to leak from the application site, thus showing reduced ability to sustain local drug residence. This work reports on the production of poly (ε-caprolactone) (PCL) fibrous matrices with ACV and omega-3 fatty acids (ω3) for application as dressings to the topical treatment of orofacial herpes. PCL fibrous matrices with the co-incorporated bioactive compounds were obtained by electrospinning and characterized regarding their morphology, chemical, physical, and mechanical properties. The potential use of the developed polymeric fibrous matrices for topical applications was evaluated by: (i) the release kinetics of the bioactive compounds; (ii) the occlusive factor of the fibrous mat; (iii) ACV skin permeation capacity; and (iv) the cytotoxicity in a keratinocyte cell line. PCL fibrous matrices loaded with the bioactive compounds presented a smooth morphology and a good balance between flexibility and hardness essential to be durable for handling, while having a desirable texture to be used comfortably. The fibrous mat also provided a sustained release of ACV during 96 h and improved the skin permeability of this drug (Kp = 0.00928 ± 0.000867 cm/h) presenting also high porosity (74%) and a water vapor transmission rate (WVTR) of 881 ± 91 g/m2day, essential to maintain moist and oxygen for faster healing of herpes lesions. Furthermore, cytotoxicity studies suggest that the fibrous mat are safe for topical application. Overall, the PCL based electrospun fibrous matrices with ACV and ω3 hereby described have the potential to be used as therapeutic bandage systems for the treatment of orofacial herpes.

17.
Colloids Surf B Biointerfaces ; 184: 110547, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606699

RESUMO

For the development of gene therapeutics for systemic administration several hurdles have to be overcome. In this article we screen the branched fatty acid lysine conjugate T14diLys, a newly designed cationic lipid for lipofection, regarding this problem. The structure and particle size of lipoplexes, prepared with lipid formulations which are based on these lipid as nucleic acid complexing agent, are investigated in absence and presence of serum. Nuclease digestion assays were performed to evaluate the protective characteristics of the lipid formulation for the complexed nucleic acid. Furthermore, the lipid formulation is investigated regarding the interaction with different serum proteins to get first insights into the protein corona formation. Another focus is set on the hemocompatibility using in vitro assays for hemolysis and complement activation and the irritation test at the chorion allantois membrane of the chicken embryo as in vivo model. Finally, preliminary transfection efficiency studies with cell culture models for cells which are assessable via systemic administration are performed to evaluate possibilities for future therapeutic applications of the new lipid formulations. Summarizing, T14diLys with the co-lipid DOPE can be used to prepare a lipoplex formulation which can be applied systemically and can be used to develop gene therapeutics for targeting endothelial cells, macrophages, or leucocytes.


Assuntos
DNA/química , Ácidos Graxos/química , Lipídeos/química , Lisina/química , Animais , Sobrevivência Celular , Células Cultivadas , Humanos , Células Jurkat , Lipossomos/síntese química , Lipossomos/química , Camundongos , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
18.
Pharmaceutics ; 11(9)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540519

RESUMO

HIV/AIDS stands as a global burden, and vaginal microbicides constitute a promising strategy for topical pre-exposure prophylaxis. Preceding the development of a microbicide containing tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC), in silico and in vitro studies were performed to evaluate the physicochemical characteristics of both drugs, and to study their biophysical impact in lipid model systems. Results from these pre-formulation studies defined hydrogels as adequate vehicles to incorporate TDF-loaded liposomes and FTC. After studying interactions with mucin, zwitterionic liposomes with a mean diameter of 134 ± 13 nm, an encapsulation TDF efficiency of approximately 84%, and a transition temperature of 41 °C were selected. The chosen liposomal formulation was non-cytotoxic to HEC-1-A and CaSki cells, and was able to favor TDF permeation across polysulfone membranes (Jss = 9.9 µg·cm-2·h-1). After the incorporation of TDF-loaded liposomes and FTC in carbomer hydrogels, the drug release profile was sustained over time, reaching around 60% for both drugs within 3-6 h, and best fitting the Weibull model. Moreover, liposomal hydrogels featured pseudoplastic profiles that were deemed suitable for topical application. Overall, the proposed liposomal hydrogels may constitute a promising formulation for the vaginal co-delivery of TDF/FTC.

19.
J Nat Prod ; 82(5): 1240-1249, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30964667

RESUMO

Different positive pharmacological effects have been attributed to the natural product resveratrol (RSV), including antioxidant, antiaging, and cancer chemopreventive properties. However, its low bioavailability and rapid metabolic degradation has led to the suspicion that many of the biological activities of this compound observed in vitro may not be attainable in humans. To improve its bioavailability and pharmacokinetic profile, attempts have been made to encapsulate RSV into lipid-based nanocarrier systems. Here, the dioctadecyldimethylammonium bromide (DODAB):monoolein (MO) liposomal system (1:2) loaded with RSV revealed appropriate characteristics for drug release purposes: reduced size for cellular uptake (157 ± 23 nm), stability up to 80 days, positive surface charge (ζ ≈ +40 mV), and a controlled biphasic release of RSV from the lipid nanocarriers over a period of almost 50 h at pH 5.0 and 7.4. Moreover, the encapsulation efficiency of the nanocarrier ranged from 70% to 92% and its RSV loading capacity from 9% to 14%, when [RSV] was between 100 and 200 µM. The partition coefficient ( Kp) of RSV between lipid and aqueous phase was log Kp = 3.37 ± 0.10, suggesting moderate to high lipophilicity of this natural compound and reinforcing the lipid nanocarriers' suitability for RSV incorporation. The thermodynamic parameters of RSV partitioning in the lipid nanocarriers at 37 °C (Δ H = 43.76 ± 5.68 kJ mol-1; Δ S = 0.20 ± 0.005 kJ mol-1; and Δ G = -18.46 ± 3.48 kJ mol-1) reflected the spontaneity of the process and the establishment of hydrophobic interactions. The cellular uptake mechanism of the RSV-loaded nanocarriers labeled with the lipophilic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was studied in the eukaryotic model system Saccharomyces cerevisiae. Thirty minutes after incubation, yeast cells readily internalized nanocarriers and the spots of blue fluorescence of DPH clustered around the central vacuole in lipid droplets colocalized with the green fluorescence of the lipophilic endocytosis probe FM1-43. Subsequent studies with the endocytosis defective yeast deletion mutant ( end3Δ) and with the endocytosis inhibitor methyl-ß-cyclodextrin supported the involvement of an endocytic pathway. This novel nanotechnology approach opens good perspectives for medical applications.


Assuntos
Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Endocitose/efeitos dos fármacos , Resveratrol/administração & dosagem , Resveratrol/farmacocinética , Saccharomyces cerevisiae/metabolismo , Disponibilidade Biológica , Portadores de Fármacos , Composição de Medicamentos , Estabilidade de Medicamentos , Lipossomos , Mutação , Nanoestruturas , Saccharomyces cerevisiae/genética
20.
Pharmaceutics ; 10(4)2018 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-30558378

RESUMO

Many graphene-based materials (GBNs) applied to therapy and diagnostics (theranostics) in cancer have been developed. Most of them are hybrid combinations of graphene with other components (e.g, drugs or other bioactives, polymers, and nanoparticles) aiming toward a synergic theranostic effect. However, the role of graphene in each of these hybrids is sometimes not clear enough and the synergic graphene effect is not proven. The objective of this review is to elaborate on the role of GBNs in the studies evaluated and to compare the nanoformulations in terms of some of their characteristics, such as therapeutic outcomes and toxicity, which are essential features for their potential use as bionanosystems. A systematic review was carried out using the following databases: PubMed, Scopus, and ISI Web of Science (2013⁻2018). Additional studies were identified manually by consulting the references list of relevant reviews. Only English papers presenting at least one strategy for cancer therapy and one strategy for cancer diagnostics, and that clearly show the role of graphene in theranostics, were included. Data extraction and quality assessment was made by reviewer pairings. Fifty-five studies met the inclusion criteria, but they were too heterogeneous to combine in statistical meta-analysis. Critical analysis and discussion of the selected papers are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA