Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biomaterials ; 305: 122462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171118

RESUMO

Liver sinusoidal endothelial cells (LSECs) are highly specific endothelial cells which play an essential role in the maintenance of liver homeostasis. During the progression of liver fibrosis, matrix stiffening promotes LSEC defenestration, however, the underlying mechanotransduction mechanism remains poorly understood. Here, we applied stiffness-tunable hydrogels to assess the matrix stiffening-induced phenotypic changes in primary mouse LSECs. Results indicated that increased stiffness promoted LSEC defenestration through cytoskeletal reorganization. LSECs sensed the increased matrix stiffness via focal adhesion kinase (FAK), leading to the activation of p38-mitogen activated protein kinase activated protein kinase 2 (MK2) pathway, thereby inducing actin remodeling via LIM Kinase 1 (LIMK1) and Cofilin. Interestingly, inhibition of FAK or p38-MK2 pathway was able to effectively restore the fenestrae to a certain degree in LSECs isolated from early to late stages of liver fibrosis mice. Thus, this study highlights the impact of mechanotransduction in LSEC defenestration, and provides novel insights for potential therapeutic interventions for liver fibrosis.


Assuntos
Células Endoteliais , Mecanotransdução Celular , Camundongos , Animais , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fígado/patologia , Cirrose Hepática/patologia
2.
JHEP Rep ; 5(12): 100905, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37920845

RESUMO

Background & Aims: Liver paracrine signaling from liver sinusoid endothelial cells to hepatocytes in response to mechanical stimuli is crucial in highly coordinated liver regeneration. Interstitial flow through the fenestrated endothelium inside the space of Disse potentiates the role of direct exposure of hepatocytes to fluid flow in the immediate regenerative responses after partial hepatectomy, but the underlying mechanisms remain unclear. Methods: Mouse liver perfusion was used to identify the effects of interstitial flow on hepatocyte proliferation ex vivo. Isolated hepatocytes were further exposed to varied shear stresses directly in vitro. Knockdown and/or inhibition of mechanosensitive proteins were used to unravel the signaling pathways responsible for cell proliferation. Results: An increased interstitial flow was visualized and hepatocytes' regenerative response was demonstrated experimentally by ex vivo perfusion of mouse livers. In vitro measurements also showed that fluid flow initiated hepatocyte proliferation in a duration- and amplitude-dependent manner. Mechanistically, flow enhanced ß1 integrin expression and nuclear translocation of YAP (yes-associated protein), via the Hippo pathway, to stimulate hepatocytes to re-enter the cell cycle. Conclusions: Hepatocyte proliferation was initiated after direct exposure to interstitial flow ex vivo or shear stress in vitro, which provides new insights into the contributions of mechanical forces to liver regeneration. Impact and implications: By using both ex vivo liver perfusion and in vitro flow exposure tests, we identified the roles of interstitial flow in the space of Disse in stimulating hepatocytes to re-enter the cell cycle. We found an increase in shear flow-induced hepatocyte proliferation via ß1 integrin-YAP mechanotransductive pathways. This serves as a useful model to potentiate hepatocyte expansion in vitro using mechanical forces.

3.
Front Bioeng Biotechnol ; 11: 1165651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214300

RESUMO

The liver is a complicated organ within the body that performs wide-ranging and vital functions and also has a unique regenerative capacity after hepatic tissue injury and cell loss. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models including partial hepatectomy (PHx) reveal that extracellular and intracellular signaling pathways can help the liver recover to its equivalent size and weight prior to an injury. In this process, mechanical cues possess immediate and drastic changes in liver regeneration after PHx and also serve as main triggering factors and significant driving forces. This review summarized the biomechanics progress in liver regeneration after PHx, mainly focusing on PHx-based hemodynamics changes in liver regeneration and the decoupling of mechanical forces in hepatic sinusoids including shear stress, mechanical stretch, blood pressure, and tissue stiffness. Also discussed were the potential mechanosensors, mechanotransductive pathways, and mechanocrine responses under varied mechanical loading in vitro. Further elucidating these mechanical concepts in liver regeneration helps establish a comprehensive understanding of the biochemical factors and mechanical cues in this process. Proper adjustment of mechanical loading within the liver might preserve and restore liver functions in clinical settings, serving as an effective therapy for liver injury and diseases.

4.
Anal Biochem ; 646: 114636, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35283069

RESUMO

The purpose of this study is to establish and validate a sensitive, robust and rapid liquid chromatography-tandem mass spectrometry method for quantifying the aescinate A and aescinate B in human plasma and assessing the association of phlebitis and aescinate A and aescinate B in vivo exposure. The chromatographic separation was completed on Agilent ZORBAX SB-C18 (2.1 mm × 100 mm, 3.5 µm, Agilent, USA) column with isocratic elution. The flow rate was 0.3 mL/min and the total run time was optimized within 5 min. The protein precipitation was applied to pretreat plasma sample using methanol as precipitant. The data acquisition was achieved with positive electrospray ionization in multi-reaction monitoring mode for both aescinate A and aescinate B. The calibration range of aescinate A and aescinate B are constructed in 100-2000 ng/mL, and their correlation coefficients are both >0.990. The intra-day and inter-day precision and accuracy of this method are less than 9.04% and within -13.75% and -0.93%. This analytical method has been successfully applied for the determination of plasma aescinate A and aescinate B concentrations in patients with cerebral infarction, and the results showed that the incidence and grade of phlebitis were not associated with the in vivo exposure of aescinate A and aescinate B.


Assuntos
Flebite , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Humanos , Flebite/diagnóstico , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
5.
J Pharm Biomed Anal ; 213: 114691, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35257982

RESUMO

Depression is a mental health disorder characterized by chronic negative mood, and depression has become a major threat to human health and quality of life. Anyupeibo capsule, a fifth-class new Chinese medicine, was prepared with extracts of Piper laetispicum C.DC. (Piperaceae), and the alkaloid K6 (5'-methoxy-3',4'-methyl-enedioxycinnamic-acidisob-utylamide-isobutylamide) was found to be the main active component. Using high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (LC-MS/MS), we developed a method to quantify the concentration of K6 in serum samples from patients with depression. Pretreatment of samples was completed based on solid-phase extraction, and the mobile phase for subsequent LC analysis consisted of aqueous ammonium acetate (0.1 mmol/L, phase A) and acetonitrile (phase B) with isocratic elution at 60% B. Chromatographic separation of K6 was achieved within 3 min with an Agilent ZORBAX SB-C18 column (2.1 × 150 mm, 3.5 µm) at a flow rate of 0.3 mL/min. A linear regression equation for K6 yielded correlation coefficients of r2 > 0.99 within a linear range 0.0503-100.5000 ng/mL. Extraction recovery ranged from 85.33% to 101.18%, and the matrix effect ranged from 87.15% to 100.28%. The inter-day and intra-day precision values-expressed as relative standard deviation-were less than 15%, and the corresponding accuracy values were within ±15%. All validation results for stability, specificity, and carry-over met the requirements of Pharmacopoeia. The LC-MS/MS method was applied to determine the K6 concentration in serum samples from patients with depression in a phase III clinical trial of Anyupeibo capsule.


Assuntos
Qualidade de Vida , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida/métodos , Depressão , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
6.
Biomater Sci ; 9(10): 3776-3790, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33876166

RESUMO

Mechanical or physical cues are associated with the growth and differentiation of embryonic stem cells (ESCs). While the substrate stiffness or topography independently affects the differentiation of ESCs, their cooperative regulation on lineage-specific differentiation remains largely unknown. Here, four topographical configurations on stiff or soft polyacrylamide hydrogel were combined to direct hepatic differentiation of human H1 cells via a four-stage protocol, and the coupled impacts of stiffness and topography were quantified at distinct stages. Data indicated that the substrate stiffness is dominant in stemness maintenance on stiff gel and hepatic differentiation on soft gel while substrate topography assists the differentiation of hepatocyte-like cells in positive correlation with the circularity of H1 clones initially formed on the substrate. The differentiated cells exhibited liver-specific functions such as maintaining the capacities of CYP450 metabolism, glycogen synthesis, ICG engulfment, and repairing liver injury in CCl4-treated mice. These results implied that the coupling of substrate stiffness and topography, combined with the biochemical signals, is favorable to improve the efficiency and functionality of hepatic differentiation of human ESCs.


Assuntos
Células-Tronco Embrionárias Humanas , Animais , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias , Fígado , Camundongos
7.
Front Bioeng Biotechnol ; 9: 724101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35198547

RESUMO

Distinct physical factors originating from the cellular microenvironment are crucial to the biological homeostasis of stem cells. While substrate stiffness and orientation are known to regulate the mechanical remodeling and fate decision of mesenchymal stem cells (MSCs) separately, it remains unclear how the two factors are combined to manipulate their mechanical stability under gravity vector. Here we quantified these combined effects by placing rat MSCs onto stiffness-varied poly-dimethylsiloxane (PDMS) substrates in upward (180°), downward (0°), or edge-on (90°) orientation. Compared with those values onto glass coverslip, the nuclear longitudinal translocation, due to the density difference between the nucleus and the cytosol, was found to be lower at 0° for 24 h and higher at 90° for 24 and 72 h onto 2.5 MPa PDMS substrate. At 0°, the cell was mechanically supported by remarkably reduced actin and dramatically enhanced vimentin expression. At 90°, both enhanced actin and vimentin expression worked cooperatively to maintain cell stability. Specifically, perinuclear actin stress fibers with a large number, low anisotropy, and visible perinuclear vimentin cords were formed onto 2.5 MPa PDMS at 90° for 72 h, supporting the orientation difference in nuclear translocation and global cytoskeleton expression. This orientation dependence tended to disappear onto softer PDMS, presenting distinctive features in nuclear translocation and cytoskeletal structures. Moreover, cellular morphology and focal adhesion were mainly affected by substrate stiffness, yielding a time course of increased spreading area at 24 h but decreased area at 72 h with a decrease of stiffness. Mechanistically, the cell tended to be stabilized onto these PDMS substrates via ß1 integrin-focal adhesion complexes-actin mechanosensitive axis. These results provided an insight in understanding the combination of substrate stiffness and orientation in defining the mechanical stability of rMSCs.

8.
Biomech Model Mechanobiol ; 20(1): 205-222, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32809130

RESUMO

Human embryonic stem cells (hESCs) can differentiate to three germ layers within biochemical and biomechanical niches. The complicated mechanical environments in vivo could have diverse effects on the fate decision and biological functions of hESCs. To globally screen mechanosensitive molecules, three typical types of mechanical stimuli, i.e., tensile stretch, shear flow, and mechanical compression, were applied in respective parameter sets of loading pattern, amplitude, frequency, and/or duration, and then, iTRAQ proteomics test was used for identifying and quantifying differentially expressed proteins in hESCs. Bioinformatics analysis identified 37, 41, and 23 proteins under stretch pattern, frequency, and duration, 13, 18, and 41 proteins under shear pattern, amplitude, and duration, and 4, 0, and 183 proteins under compression amplitude, frequency, and duration, respectively, where distinct parameters yielded the differentially weighted preferences under each stimulus. Ten mechanosensitive proteins were commonly shared between two of three mechanical stimuli, together with numerous proteins identified under single stimulus. More importantly, functional GSEA and WGCNA analyses elaborated the variations of the screened proteins with loading parameters. Common functions in protein synthesis and modification were identified among three stimuli, and specific functions were observed in skin development under stretch alone. In conclusion, mechanomics analysis is indispensable to map actual mechanosensitive proteins under physiologically mimicking mechanical environment, and sheds light on understanding the core hub proteins in mechanobiology.


Assuntos
Células-Tronco Embrionárias Humanas/fisiologia , Resistência ao Cisalhamento , Estresse Mecânico , Fenômenos Biomecânicos , Linhagem Celular , Nucléolo Celular/metabolismo , Análise por Conglomerados , Redes Reguladoras de Genes , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Mecanotransdução Celular , Fenótipo , Mapas de Interação de Proteínas , Proteínas/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Reprodutibilidade dos Testes , Frações Subcelulares/metabolismo , Resistência à Tração
9.
Stem Cell Res Ther ; 10(1): 349, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775893

RESUMO

BACKGROUND: Distinct mechanical stimuli are known to manipulate the behaviors of embryonic stem cells (ESCs). Fundamental rationale of how ESCs respond to mechanical forces and the potential biological effects remain elusive. Here we conducted the mechanobiological study for hESCs upon mechanomics analysis to unravel typical mechanosensitive processes on hESC-specific fluid shear. METHODS: hESC line H1 was subjected to systematically varied shear flow, and mechanosensitive proteins were obtained by mass spectrometry (MS) analysis. Then, function enrichment analysis was performed to identify the enriched gene sets. Under a steady shear flow of 1.1 Pa for 24 h, protein expressions were further detected using western blotting (WB), quantitative real-time PCR (qPCR), and immunofluorescence (IF) staining. Meanwhile, the cells were treated with 200 nM trichostatin (TSA) for 1 h as positive control to test chromatin decondensation. Actin, DNA, and RNA were then visualized with TRITC-labeled phalloidin, Hoechst 33342, and SYTO® RNASelect™ green fluorescent cell stain (Life Technologies), respectively. In addition, cell stiffness was determined with atomic force microscopy (AFM) and annexin V-PE was used to determine the apoptosis with a flow cytometer (FCM). RESULTS: Typical mechanosensitive proteins were unraveled upon mechanomics analysis under fluid shear related to hESCs in vivo. Functional analyses revealed significant alterations in histone acetylation, nuclear size, and cytoskeleton for hESC under shear flow. Shear flow was able to induce H2B acetylation and nuclear spreading by CFL2/F-actin cytoskeletal reorganization. The resulting chromatin decondensation and a larger nucleus readily accommodate signaling molecules and transcription factors. CONCLUSIONS: Shear flow regulated chromatin dynamics in hESCs via cytoskeleton and nucleus alterations and consolidated their primed state.


Assuntos
Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Mecanotransdução Celular , Processamento de Proteína Pós-Traducional , Resistência ao Cisalhamento , Acetilação , Linhagem Celular , Citoesqueleto/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos
10.
Rev Sci Instrum ; 90(7): 075114, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31370504

RESUMO

Pathophysiological changes of astronauts under space microgravity involve complex factors and require an integrative perspective to fully understand the mechanisms. The readouts from space cell biology experiments strongly depend on the hardware and especially the cell bioreactor that is used in distinct spacecraft. Herein, a specialized cell culture bioreactor is designed for culturing mammalian cells on board the SJ-10 satellite. This hardware focuses mainly on satisfying the requirements of gas exchange, bubble separation, and flow control, as well as their functional and structural integration on cell culture within the technical and environmental constraints of the spacecraft platform under microgravity. A passive bubble separator is constructed and is connected in series to an individual cell culture chamber to remove the bubbles that were produced in orbit during cell growth. A moderate flow rate is preset to provide sufficient mass transfer and low shear stress in a well-designed flow circuit. Together with other modules of temperature control, in situ microscopic imaging, and online imaging acquisition, this novel space cell culture system is successfully used to culture human endothelial cells and rat bone marrow-derived mesenchymal stem cells in the SJ-10 mission. The advantages and shortcomings of the integration design are discussed for this type of the hardware.

11.
FASEB J ; 33(3): 4273-4286, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30521385

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) are able to differentiate into functional hepatocytelike cells, which are expected to serve as a potential cell source in regenerative medicine, tissue engineering, and clinical treatment of liver injury. Little is known about whether and how space microgravity is able to direct the hepatogenic differentiation of BMSCs in the actual space microenvironment. In this study, we examined the effects of space microgravity on BMSC hepatogenic differentiation on board the SJ-10 Recoverable Scientific Satellite. Rat BMSCs were cultured and induced in hepatogenic induction medium for 3 and 10 d in custom-made space cell culture hardware. Cell growth was monitored periodically in orbit, and the fixed cells and collected supernatants were retrieved back to the Earth for further analyses. Data indicated that space microgravity improves the differentiating capability of the cells by up-regulating hepatocyte-specific albumin and cytokeratin 18. The resulting cells tended to be maturated, with an in-orbit period of up to 10 d. In space, mechanosensitive molecules of ß1-integrin, ß-actin, α-tubulin, and Ras homolog gene family member A presented enhanced expression, whereas those of cell-surface glycoprotein CD44, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, vinculin, cell division control protein 42 homolog, and Rho-associated coiled-coil kinase yielded reduced expression. Also observed in space were the depolymerization of actin filaments and the accumulation of microtubules and vimentin through the altered expression and location of focal adhesion complexes, Rho guanosine 5'-triphosphatases, as well as the enhanced exosome-mediated mRNA transfer. This work furthers the understanding of the underlying mechanisms of space microgravity in directing hepatogenic differentiation of BMSCs.-Lü, D., Sun, S., Zhang, F., Luo, C., Zheng, L., Wu, Y., Li, N., Zhang, C., Wang, C., Chen, Q., Long, M. Microgravity-induced hepatogenic differentiation of rBMSCs on board the SJ-10 satellite.


Assuntos
Diferenciação Celular/fisiologia , Hepatócitos/fisiologia , Fígado/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Exossomos/metabolismo , Exossomos/fisiologia , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Ausência de Peso
12.
Integr Biol (Camb) ; 10(10): 605-634, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30206629

RESUMO

It is widely agreed that keratinocyte migration plays a crucial role in wound re-epithelialization. Defects in this function contribute to wound reoccurrence causing significant clinical problems. Several in vitro studies have shown that the speed of migrating keratinocytes can be regulated by epidermal growth factor (EGF) which affects keratinocyte's integrin expression. The relationship between integrin expression (through cell-matrix adhesion) stimulated by EGF and keratinocyte migration speed is not linear since increased adhesion, due to increased integrin expression, has been experimentally shown to slow down cell migration due to the biphasic dependence of cell speed on adhesion. In our previous work we showed that keratinocytes that were co-cultured with EGF-enhanced fibroblasts formed an asymmetric migration pattern, where, the cumulative distances of keratinocytes migrating toward fibroblasts were smaller than those migrating away from fibroblasts. This asymmetric pattern is thought to be provoked by high EGF concentration secreted by fibroblasts. The EGF stimulates the expression of integrin receptors on the surface of keratinocytes migrating toward fibroblasts via paracrine signaling. In this paper, we present a computational model of keratinocyte migration that is controlled by EGF secreted by fibroblasts using the Cellular Potts Model (CPM). Our computational simulation results confirm the asymmetric pattern observed in experiments. These results provide a deeper insight into our understanding of the complexity of keratinocyte migration in the presence of growth factor gradients and may explain re-epithelialization failure in impaired wound healing.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Epitélio/metabolismo , Fibroblastos/metabolismo , Queratinócitos/citologia , Reepitelização , Adesão Celular , Linhagem Celular , Movimento Celular , Técnicas de Cocultura , Colágeno/química , Simulação por Computador , Humanos , Integrinas/metabolismo , Modelos Teóricos , Comunicação Parácrina , Transdução de Sinais , Pele/metabolismo , Estresse Mecânico
13.
Front Physiol ; 9: 1025, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108515

RESUMO

Endothelial cells (ECs) are mechanosensitive cells undergoing morphological and functional changes in space. Ground-based study has provided a body of evidences about how ECs can respond to the effect of simulated microgravity, however, these results need to be confirmed by spaceflight experiments in real microgravity. In this work, we cultured EA.hy926 ECs on board the SJ-10 Recoverable Scientific Satellite for 3 and 10 days, and analyzed the effects of space microgravity on the ECs. Space microgravity suppressed the glucose metabolism, modulated the expression of cellular adhesive molecules such as ICAM-1, VCAM-1, and CD44, and depressed the pro-angiogenesis and pro-inflammation cytokine secretion. Meanwhile, it also induced the depolymerization of actin filaments and microtubules, promoted the vimentin accumulation, restrained the collagen I and fibronectin deposition, regulated the mechanotransduction through focal adhesion kinase and Rho GTPases, and enhanced the exosome-mediated mRNA transfer. Unlike the effect of simulated microgravity, neither three-dimensional growth nor enhanced nitric oxide production was observed in our experimental settings. This work furthers the understandings in the effects and mechanisms of space microgravity on ECs, and provides useful information for future spaceflight experimental design.

14.
PLoS One ; 13(4): e0193456, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29630675

RESUMO

To determine the effect of mechanical stretching load and the efficacy of postmenopausal estrogen therapy (ET) on pelvic organ prolapse (POP), vaginal fibroblasts isolated from postmenopausal women with or without POP were subjected to 0.1-Hz uniaxial cyclic mechanical stretching (CS) with 10% elongation and 10-8 M 17-ß-estradiol (E2) treatment. We investigated the morphological characteristics of extracellular polymers using scanning electron microscopy (SEM) and monitored the mRNA expression of type I collagen (COL I) and type III collagen (COL III) as well as the small leucine-rich proteoglycan (SLRP) family members decorin (DCN), biglycan (BGN), fibromodulin (FMO), and lumican (LUM), using real-time quantitative polymerase chain reaction (RT-PCR). Using SEM, certain viscoelastic polymers were found to be randomly distributed among fibroblasts, which for normal fibroblasts formed clusters of plum flower-like patterns under static-culture conditions and resembled stretched strips when stretched in culture, whereas polymers among POP fibroblasts resembled stretched strips under static-cultured conditions and presented broken networks when stretched in culture. RT-PCR revealed that COL I, DCN, BGN, FMO, and LUM mRNA expression was significantly higher in POP than in normal fibroblasts under static-culture condition. Following CS, COL I and BGN mRNA expression was significantly up-regulated in normal fibroblasts, and DCN and FMO mRNA expression was down-regulated in POP fibroblasts. Following concomitant CS and E2 treatment, significantly elevated COL I and DCN mRNA expression was observed in normal fibroblasts, and significantly elevated COL I and BGN mRNA expression was observed in POP fibroblasts. COL III mRNA expression was not significantly different between the POP and normal group, and CS did not significantly affect expression in either group, though COL III was down-regulated in normal fibroblasts concomitantly treated with E2 and CS. We conclude that the morphological distribution of extracellular polymers in POP fibroblasts exhibited higher sensitivity and lower tolerance to stretching loads than do normal fibroblasts. These mechanical properties were further reflected in the transcription of COL I. Defects in the compensatory function of BGN for DCN and LUM for FMO exist in POP fibroblasts, which further affect the structure and function of COL I in response to stretching load, ultimately resulting in abnormal reconstruction of pelvic supportive connective tissues and the occurrence of POP. ET can maintain stretching-induced elevations in COL I and DCN transcription in healthy women and improve stretching-induced COL I, DCN, BGN, and FMO transcriptional changes in POP women to prevent and improve POP. Only down-regulated COL III transcription was observed upon concomitant CS and E2 treatment in normal fibroblasts, which suggests that the tensile strength, not the elasticity, of the supportive connective tissues is damaged in POP and that the higher tensile strength induced by ET in healthy fibroblasts prevents POP. These findings confirm the role of higher sensitivity and lower tolerance to mechanical stretching in the pathogenesis of POP and further provide evidence supporting the use of ET to prevent and inhibit POP in postmenopausal women.


Assuntos
Colágeno/metabolismo , Fibroblastos/metabolismo , Prolapso de Órgão Pélvico/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/metabolismo , Estresse Mecânico , Vagina/metabolismo , Idoso , Colágeno/genética , Tecido Conjuntivo/efeitos dos fármacos , Tecido Conjuntivo/metabolismo , Estradiol/farmacologia , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade , Prolapso de Órgão Pélvico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/genética , Vagina/citologia , Vagina/efeitos dos fármacos
15.
Biomech Model Mechanobiol ; 17(1): 191-203, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28819695

RESUMO

Translocation of dense nucleus along gravity vector initiates mechanical remodeling of a eukaryotic cell. In our previous experiments, we quantified the impact of gravity vector on cell remodeling by placing an MC3T3-E1 cell onto upward (U)-, downward (D)-, or edge-on (E)- orientated substrate. Our experimental data demonstrate that orientation dependence of nucleus longitudinal translocation is positively correlated with cytoskeletal (CSK) remodeling of their expressions and structures and also is associated with rearrangement of focal adhesion complex (FAC). However, the underlying mechanism how CSK network and FACs are reorganized in a mammalian cell remains unclear. In this paper, we developed a theoretical biomechanical model to integrate the mechanosensing of nucleus translocation with CSK remodeling and FAC reorganization induced by a gravity vector. The cell was simplified as a nucleated tensegrity structure in the model. The cell and CSK filaments were considered to be symmetrical. All elements of CSK filaments and cytomembrane that support the nucleus were simplified as springs. FACs were simplified as an adhesion cluster of parallel bonds with shared force. Our model proposed that gravity vector-directed translocation of the cell nucleus is mechanically balanced by CSK remodeling and FAC reorganization induced by a gravitational force. Under gravity, dense nucleus tends to translocate and exert additional compressive or stretching force on the cytoskeleton. Finally, changes of the tension force acting on talin by microfilament alter the size of FACs. Results from our model are in qualitative agreement with those from experiments.


Assuntos
Gravitação , Homeostase , Mamíferos/metabolismo , Modelos Biológicos , Actinas/metabolismo , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Camundongos , Fatores de Tempo , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
16.
Exp Ther Med ; 13(4): 1285-1294, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28413468

RESUMO

The aim of the present study was to explore sunitinib-induced autophagic effects and the specific molecular mechanisms involved, in vitro, using PC-3 and LNCaP human prostate cancer cell lines. Cells were exposed to escalating doses of sunitinib treatment and subsequent cell viability and cell cycle analyses were performed to evaluate the inhibitory effect of sunitinib in vitro. Immunofluorescence staining of microtubule associated protein 1A/1B-light chain 3 (LC3) puncta was employed to assess autophagy levels after sunitinib treatment. Western blot analysis was performed to evaluate variations in the levels of LC3, sequestosome-1, extracellular signal regulated kinase 1/2 (ERK1/2), mammalian target of rapamycin (mTOR), p70 ribosomal protein S6 kinase (p70S6K) and cleaved caspase-3 proteins. The present study revealed that sunitinib treatment inhibited cell growth and triggered autophagy in a dose-dependent manner in both cell lines. In addition, sunitinib activated ERK1/2 and inhibited mTOR/p70S6K signaling. Sunitinib-induced autophagy was notably reversed by ERK1/2 kinase inhibitor, U0126. Furthermore, inhibition of sunitinib-induced autophagy by 3-methyladenine enhanced apoptosis and exhibited improved cell viability, which indicated that sunitinib induces not only apoptosis but also autophagic cell death in prostate cancer cell lines. These results may lead to an improved understanding of the mechanism of sunitinib's cytotoxic action and may provide evidence that combined sunitinib autophagy-regulating treatment may be of benefit to anti-prostate cancer therapy.

17.
FASEB J ; 31(2): 802-813, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27871065

RESUMO

Translocation of the dense nucleus along a gravity vector initiates mechanical remodeling of a cell, but the underlying mechanisms of cytoskeletal network and focal adhesion complex (FAC) reorganization in a mammalian cell remain unclear. We quantified the remodeling of an MC3T3-E1 cell placed in upward-, downward-, or edge-on-orientated substrate. Nucleus longitudinal translocation presents a high value in downward orientation at 24 h or in edge-on orientation at 72 h, which is consistent with orientation-dependent distribution of perinuclear actin stress fibers and vimentin cords. Redistribution of total FAC area and fractionized super mature adhesion number coordinates this dependence at short duration. This orientation-dependent remodeling is associated with nucleus flattering and lamin A/C phosphorylation. Actin depolymerization or Rho-associated protein kinase signaling inhibition abolishes the orientation dependence of nucleus translocation, whereas tubulin polymerization inhibition or vimentin disruption reserves the dependence. A biomechanical model is therefore proposed for integrating the mechanosensing of nucleus translocation with cytoskeletal remodeling and FAC reorganization induced by a gravity vector.-Zhang, C., Zhou, L., Zhang, F., Lü, D., Li, N., Zheng, L., Xu, Y., Li, Z., Sun, S., Long, M. Mechanical remodeling of normally sized mammalian cells under a gravity vector.


Assuntos
Técnicas de Cultura de Células , Gravitação , Osteoblastos/fisiologia , Animais , Fenômenos Biomecânicos , Linhagem Celular , Núcleo Celular , Regulação Enzimológica da Expressão Gênica , Camundongos , Osteoblastos/citologia , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
18.
Exp Ther Med ; 12(3): 1542-1550, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27588075

RESUMO

Wound healing is a complicated but highly organized process in which cell migration and proliferation are actively involved. However, the process by which mechanical stretch regulates the proliferation and migration of human skin fibroblasts (HFs) and keratinocytes is poorly understood. Using a house built mechanical stretch device, we examined the HFs extracellular matrix (ECM) components changes under non-stretch, static stretch or cyclic stretch conditions. We further investigated the changes in ECM component protein expression levels in keratinocytes and analyzed the effects of individual ECM component on keratinocyte proliferation and migration. Particularly, the roles of calcium/calmodulin-dependent serine protein kinase (CASK) in the HF proliferation under cyclic stretch were investigated. Cyclic stretch suppressed HF proliferation compared with HFs without stretch or with static stretch. Cyclic stretch also led to a significant reduction in the levels of collagen I and a marked increase of fibronectin in HFs ECM. By contrast, collagen I levels increased and fibronectin levels decreased in response to non-stretch and static stretch conditions. After cyclic stretch, the proliferation of keratinocytes was inhibited by the cyclic stretch-induced ECM in HFs. The inoculation of keratinocytes with single ECM component suggested that collagen I was more capable of inducing cell proliferation than fibronectin, while it had less impact on cell migration compared with fibronectin. Furthermore, cyclic stretch induced by proliferation inhibition was associated with altered integrin ß1-CASK signal pathway. The present results demonstrated the existence of HF-ECM-keratinocyte 'cross-talk' in cutaneous tissues. Thus, the integrin ß1-CASK signal pathway in HFs may be involved in the outside-in signal transduction of extracellular stretch and the altered ECM component expression.

19.
ACS Appl Mater Interfaces ; 8(13): 8367-75, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26971622

RESUMO

Manipulation of genes in human embryonic stem cells (hESCs) is imperative for their highly potential applications; however, the transduction efficiency remains very low. Although existing evidence revealed the type, size, and zeta potential of vector affect gene transfection efficiency in cells, the systematic study in hESCs is scarce. In this study, using poly(amidoamine) (PAMAM) dendrimers ended with amine, hydroxyl, or carboxyl as model, we tested the influences of size and surface group as well as cytotoxicity and endocytosis on hESC gene transfection. We found that in culture medium of mTeSR the particle sizes of G5, G7, G4.5COOH, and G5OH were around 5 nm and G1 had a smaller size of 3.14 nm. G5 and G7 had a slight and significant positive zeta potential, respectively, whereas G1 was slightly negative, and G4.5COOH and G5OH were significantly negative. We demonstrated that only amine-terminated dendrimers accomplished gene transfection in hESCs, which is greater than that from Lipofectamine 2000 transfection. Ten micromolar G5 had the greatest efficiency and was better than 1000 µM G1. Only a low concentration (0.5 and 1 µM) of G7 realized gene delivery. Amine-ended dendrimers, especially with higher generations, were detrimental to the growth and pluripotent maintenance of hESCs. In contrast, similarly sized hydroxyl- and carboxyl-terminated dendrimers exerted much lower cytotoxicity, in which carboxyl-terminated dendrimer maintained pluripotency of hESCs. We also confirmed the endocytosis into and significant exocytosis from hESCs using FITC-labeled G5 dendrimer. These results suggested that careful considerations of size, concentration, and zeta potential, particularly the identity and position of groups, as well as minimized exocytosis in the design of a vector for hESC gene delivery are necessary, which helps to better design an effective vector in hESC gene transduction.


Assuntos
Dendrímeros/farmacologia , Técnicas de Transferência de Genes , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Transfecção/métodos , Endocitose/efeitos dos fármacos , Endocitose/genética , Humanos , Lipídeos/química , Lipídeos/farmacologia , Tamanho da Partícula
20.
Biomed Eng Online ; 15(Suppl 2): 130, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28155694

RESUMO

BACKGROUND: Keratinocyte (KC) migration in re-epithelization is crucial in repairing injured skin. But the mechanisms of how mechanical stimuli regulate the migration of keratinocytes have been poorly understood. METHODS: Human immortalized keratinocyte HaCaT cells were co-cultured with skin fibroblasts on PDMS membranes and transferred to the static stretch device developed in-house for additional 6 day culture under mechanical stretch to mimic surface tension in skin. To detect the expression of proteins on different position at different time points and the effect of ß1 integrin mechanotransduction on HaCaT migration, Immunofluorescence, Reverse transcription-polymerase chain reaction, Flow cytometry, Western blotting assays were applied. RESULTS: Mechanical receptor of ß1 integrin that recognizes its ligand of collagen I was found to be strongly associated with migration of HaCaT cells since the knockdown of ß1 integrin via RNA silence eliminated the key protein expression dynamically. Here the expression of vinculin was lower but that of Cdc42 was higher for the cells at outward edge than those at inward edge, respectively, supporting that the migration capability of keratinocytes is inversely correlated with the formation of focal adhesion complexes but positively related to the lamellipodia formation. This asymmetric expression feature was further confirmed by high or low expression of PI3K for outward- or inward-migrating cells. And ERK1/2 phosphorylation was up-regulated by mechanical stretch. CONCLUSION: We reported here, a novel mechanotransduction signaling pathways were ß1 integrin-dependent pattern of keratinocytes migration under static stretch in an in vitro co-culture model. These results provided an insight into underlying molecular mechanisms of keratinocyte migration under mechanical stimuli.


Assuntos
Movimento Celular , Cadeias beta de Integrinas/metabolismo , Queratinócitos/metabolismo , Transdução de Sinais , Linhagem Celular , Técnicas de Cocultura , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Queratinócitos/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Pseudópodes/metabolismo , Interferência de RNA , Estresse Mecânico , Vinculina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA