Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 84(10): 2630-2643, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34553942

RESUMO

Claviceps purpurea is an ergot fungus known for its neurotropic alkaloids, which have been identified as the main cause of ergotism, a livestock and human disease triggered by ergot consumption. Tetrahydroxanthone dimers, the so-called ergopigments, presumably also contribute to this toxic effect. Overexpression of the cluster-specific transcription factor responsible for the formation of these pigments in C. purpurea led to the isolation of three new metabolites (8-10). The new pigments were characterized utilizing HRMS, NMR techniques, and CD spectroscopy and shown to be xanthone dimers. Secalonic acid A and its 2,4'- and 4,4'-linked isomers were also isolated, and their absolute configuration was investigated. The contribution of secalonic acid A, its isomers, and new metabolites to the toxicity of C. purpurea was investigated in HepG2 and CCF-STTG1 cells. Along with cytotoxic properties, secalonic acid A was found to inhibit topoisomerase I and II activity.


Assuntos
Claviceps/química , Xantenos/química , Células Hep G2 , Humanos , Estrutura Molecular , Inibidores da Topoisomerase , Xantonas
2.
Front Fungal Biol ; 2: 671796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744112

RESUMO

The phytopathogenic fungus Fusarium mangiferae belongs to the Fusarium fujikuroi species complex (FFSC). Members of this group cause a wide spectrum of devastating diseases on diverse agricultural crops. F. mangiferae is the causal agent of the mango malformation disease (MMD) and as such detrimental for agriculture in the southern hemisphere. During plant infection, the fungus produces a plethora of bioactive secondary metabolites (SMs), which most often lead to severe adverse defects on plants health. Changes in chromatin structure achieved by posttranslational modifications (PTM) of histones play a key role in regulation of fungal SM biosynthesis. Posttranslational tri-methylation of histone 3 lysine 9 (H3K9me3) is considered a hallmark of heterochromatin and established by the SET-domain protein Kmt1. Here, we show that FmKmt1 is involved in H3K9me3 in F. mangiferae. Loss of FmKmt1 only slightly though significantly affected fungal hyphal growth and stress response and is required for wild type-like conidiation. While FmKmt1 is largely dispensable for the biosynthesis of most known SMs, removal of FmKMT1 resulted in an almost complete loss of fusapyrone and deoxyfusapyrone, γ-pyrones previously only known from Fusarium semitectum. Here, we identified the polyketide synthase (PKS) FmPKS40 to be involved in fusapyrone biosynthesis, delineate putative cluster borders by co-expression studies and provide insights into its regulation.

3.
Fungal Genet Biol ; 145: 103481, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130255

RESUMO

Claviceps purpurea is a plant pathogenic fungus which is still highly relevant in modern agriculture as it infects grasses such as rye and wheat. The disease caused by the consumption of contaminated grain or flour has been known since the Middle Ages and is termed ergotism. The main cause for the toxicity of this fungus is attributed to the ergot alkaloids. Apart from these alkaloids and the ergochromes known as ergot pigments, the secondary metabolism of C. purpurea is not well investigated. This study demonstrated the function of the polyketide synthase PKS7 in C. purpurea by determining the effect of its overexpression on metabolite profiles. For the first time, the depsides lecanoric acid, ethyl lecanorate, gerfelin, and C10-deoxy gerfelin were discovered as secondary metabolites of C. purpurea. Additionally, to estimate the contribution of isolated secondary metabolites to the toxic effects of C. purpurea, lecanoric acid, ethyl lecanorate, and orsellinic acid were tested on HepG2 and CCF-STTG1 cell lines. This study provides the first report on the function of C. purpurea PKS7 responsible for the production of depsides, among which lecanoric acid and ethyl lecanorate were identified as main secondary metabolites.


Assuntos
Claviceps/genética , Alcaloides de Claviceps/biossíntese , Policetídeo Sintases/genética , Salicilatos/metabolismo , Claviceps/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Alcaloides de Claviceps/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA