Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 33(2): 99-103, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36648443

RESUMO

Nonulosonic acids or non-2-ulosonic acids (NulOs) are an ancient family of 2-ketoaldonic acids (α-ketoaldonic acids) with a 9-carbon backbone. In nature, these monosaccharides occur either in a 3-deoxy form (referred to as "sialic acids") or in a 3,9-dideoxy "sialic-acid-like" form. The former sialic acids are most common in the deuterostome lineage, including vertebrates, and mimicked by some of their pathogens. The latter sialic-acid-like molecules are found in bacteria and archaea. NulOs are often prominently positioned at the outermost tips of cell surface glycans, and have many key roles in evolution, biology and disease. The diversity of stereochemistry and structural modifications among the NulOs contributes to more than 90 sialic acid forms and 50 sialic-acid-like variants described thus far in nature. This paper reports the curation of these diverse naturally occurring NulOs at the NCBI sialic acid page (https://www.ncbi.nlm.nih.gov/glycans/sialic.html) as part of the NCBI-Glycans initiative. This includes external links to relevant Carbohydrate Structure Databases. As the amino and hydroxyl groups of these monosaccharides are extensively derivatized by various substituents in nature, the Symbol Nomenclature For Glycans (SNFG) rules have been expanded to represent this natural diversity. These developments help illustrate the natural diversity of sialic acids and related NulOs, and enable their systematic representation in publications and online resources.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Animais , Ácidos Siálicos/química , Polissacarídeos/química , Monossacarídeos , Catalogação
2.
F1000Res ; 9: 136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308977

RESUMO

We report on the activities of the 2015 edition of the BioHackathon, an annual event that brings together researchers and developers from around the world to develop tools and technologies that promote the reusability of biological data. We discuss issues surrounding the representation, publication, integration, mining and reuse of biological data and metadata across a wide range of biomedical data types of relevance for the life sciences, including chemistry, genotypes and phenotypes, orthology and phylogeny, proteomics, genomics, glycomics, and metabolomics. We describe our progress to address ongoing challenges to the reusability and reproducibility of research results, and identify outstanding issues that continue to impede the progress of bioinformatics research. We share our perspective on the state of the art, continued challenges, and goals for future research and development for the life sciences Semantic Web.


Assuntos
Disciplinas das Ciências Biológicas , Biologia Computacional , Web Semântica , Mineração de Dados , Metadados , Reprodutibilidade dos Testes
3.
Glycobiology ; 29(9): 620-624, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31184695

RESUMO

The Symbol Nomenclature for Glycans (SNFG) is a community-curated standard for the depiction of monosaccharides and complex glycans using various colored-coded, geometric shapes, along with defined text additions. It is hosted by the National Center for Biotechnology Information (NCBI) at the NCBI-Glycans Page (www.ncbi.nlm.nih.gov/glycans/snfg.html). Several changes have been made to the SNFG page in the past year to update the rules for depicting glycans using the SNFG, to include more examples of use, particularly for non-mammalian organisms, and to provide guidelines for the depiction of ambiguous glycan structures. This Glycoforum article summarizes these recent changes.


Assuntos
National Library of Medicine (U.S.)/organização & administração , Polissacarídeos/química , Terminologia como Assunto , Animais , Internet , Polissacarídeos/classificação , Estados Unidos
4.
Biology (Basel) ; 8(2)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925725

RESUMO

Neutrophil extracellular traps (NETs) are formed by neutrophils during inflammation. Among other things, these DNA constructs consist of antimicrobial proteins such as lactoferrin and histones. With these properties, NETs capture and destroy invading microorganisms. The carbohydrate polysialic acid (polySia) interacts with both lactoferrin and histones. Previous experiments demonstrated that, in humans, lactoferrin inhibits the release of NET and that this effect is supported by polySia. In this study, we examined the interplay of lactoferrin and polySia in already-formed NETs from bovine neutrophils. The binding of polySia was considered to occur at the lactoferricin (LFcin)-containing domain of lactoferrin. The interaction with the peptide LFcin was studied in more detail using groups of defined polySia chain lengths, which suggested a chain-length-dependent interaction mechanism with LFcin. The LFcin domain of lactoferrin was found to interact with DNA. Therefore, the possibility that polySia influences the integration of lactoferrin into the DNA-structures of NETs was tested by isolating bovine neutrophils and inducing NETosis. Experiments with NET fibers saturated with lactoferrin demonstrated that polySia initiates the incorporation of external lactoferrin in already-loaded NETs. Thus, polySia may modulate the constituents of NET.

5.
Nucleic Acids Res ; 47(D1): D1195-D1201, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357361

RESUMO

Glycosciences.DB, the glycan structure database of the Glycosciences.de portal, collects various kinds of data on glycan structures, including carbohydrate moieties from worldwide Protein Data Bank (wwPDB) structures. This way it forms a bridge between glycomics and proteomics resources. A major update of this database combines a redesigned web interface with a series of new functions. These include separate entry pages not only for glycan structures but also for literature references and wwPDB entries, improved substructure search options, a newly available keyword search covering all types of entries in one query, and new types of information that is added to glycan structures. These new features are described in detail in this article, and options how users can provide information to the database are discussed as well. Glycosciences.DB is available at http://www.glycosciences.de/database/ and can be freely accessed.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Glicoproteínas/metabolismo , Proteômica/métodos , Animais , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Interface Usuário-Computador
6.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 8): 463-472, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30084395

RESUMO

Glycosylation is one of the most common forms of protein post-translational modification, but is also the most complex. Dealing with glycoproteins in structure model building, refinement, validation and PDB deposition is more error-prone than dealing with nonglycosylated proteins owing to limitations of the experimental data and available software tools. Also, experimentalists are typically less experienced in dealing with carbohydrate residues than with amino-acid residues. The results of the reannotation and re-refinement by PDB-REDO of 8114 glycoprotein structure models from the Protein Data Bank are analyzed. The positive aspects of 3620 reannotations and subsequent refinement, as well as the remaining challenges to obtaining consistently high-quality carbohydrate models, are discussed.


Assuntos
Bases de Dados de Proteínas/classificação , Bases de Dados de Proteínas/normas , Glicoproteínas/química , Glicoproteínas/classificação
7.
Q Rev Biophys ; 50: e9, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233221

RESUMO

Interactions between human lysozyme (HL) and the lipopolysaccharide (LPS) of Klebsiella pneumoniae O1, a causative agent of lung infection, were identified by surface plasmon resonance. To characterize the molecular mechanism of this interaction, HL binding to synthetic disaccharides and tetrasaccharides representing one and two repeating units, respectively, of the O-chain of this LPS were studied. pH-dependent structural rearrangements of HL after interaction with the disaccharide were observed through nuclear magnetic resonance. The crystal structure of the HL-tetrasaccharide complex revealed carbohydrate chain packing into the A, B, C, and D binding sites of HL, which primarily occurred through residue-specific, direct or water-mediated hydrogen bonds and hydrophobic contacts. Overall, these results support a crucial role of the Glu35/Asp53/Trp63/Asp102 residues in HL binding to the tetrasaccharide. These observations suggest an unknown glycan-guided mechanism that underlies recognition of the bacterial cell wall by lysozyme and may complement the HL immune defense function.


Assuntos
Imunidade , Lectinas/química , Muramidase/química , Muramidase/metabolismo , Sítios de Ligação , Dissacarídeos/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Modelos Moleculares , Conformação Proteica
8.
Front Immunol ; 8: 1229, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033944

RESUMO

Neutrophils are involved in numerous immunological events. One mechanism of neutrophils to combat pathogens is the formation of neutrophil extracellular traps (NETs). Thereby, neutrophils use DNA fibers to form a meshwork of DNA and histones as well as several antimicrobial components to trap and kill invaders. However, the formation of NETs can lead to pathological conditions triggering among other things (e.g., sepsis or acute lung failure), which is mainly a consequence of the cytotoxic characteristics of accumulated extracellular histones. Interestingly, the carbohydrate polysialic acid represents a naturally occurring antagonist of the cytotoxic properties of extracellular histones. Inspired by polysialylated vesicles, we developed polysialylated nanoparticles. Since sialidases are frequently present in areas of NET formation, we protected the sensitive non-reducing end of these homopolymers. To this end, the terminal sialic acid residue of the non-reducing end was oxidized and directly coupled to nanoparticles. The covalently linked sialidase-resistant polysialic acid chains are still able to neutralize histone-mediated cytotoxicity and to initiate binding of these polysialylated particles to NET filaments. Furthermore, polysialylated fluorescent microspheres can be used as a bioanalytical tool to stain NET fibers. Thus, polySia chains might not only be a useful agent to reduce histone-mediated cytotoxicity but also an anchor to accumulate nanoparticles loaded with active substances in areas of NET formation.

9.
Perspect Sci (Neth) ; 11: 24-30, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28955652

RESUMO

The GLYcan Data Exchange (GLYDE) standard has been developed for the representation of the chemical structures of monosaccharides, glycans and glycoconjugates using a connection table formalism formatted in XML. This format allows structures, including those that do not exist in any database, to be unambiguously represented and shared by diverse computational tools. GLYDE implements a partonomy model based on human language along with rules that provide consistent structural representations, including a robust namespace for specifying monosaccharides. This approach facilitates the reuse of data processing software at the level of granularity that is most appropriate for extraction of the desired information. GLYDE-II has already been used as a key element of several glycoinformatics tools. The philosophical and technical underpinnings of GLYDE-II and recent implementation of its enhanced features are described.

10.
Biology (Basel) ; 6(2)2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28448440

RESUMO

In mammals several cell adhesion molecules are involved during the pre- and postnatal development of all organ systems. A very prominent member of this family is the neural cell adhesion molecule (NCAM). Interestingly, NCAM can be a target for a special form of posttranslational modification: polysialylation. Whereas nearly all extracellular proteins bear mono-sialic acid residues, only a very small group can be polysialylated. Polysialic acid is a highly negatively-charged sugar polymer and can comprise more than 90 sialic acid residues in postnatal mouse brains increasing dramatically the hydrodynamic radius of their carriers. Thus, adhesion and communication processes on cell surfaces are strongly influenced allowing, e.g., the migration of neuronal progenitor cells. In the developing brain the essential role of polysialylated NCAM has been demonstrated in many studies. In comparison to the neuronal system, however, during the formation of other organs the impact of the polysialylated form of NCAM is not well characterized and the number of studies is limited so far. This review summarizes these observations and discusses possible roles of polysialylated NCAM during the development of organs other than the brain.

11.
BMC Genomics ; 18(1): 264, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28351377

RESUMO

BACKGROUND: Type I interferons are major players against viral infections and mediate their function by the induction of Interferon regulated genes (IRGs). Recently, it became obvious that these cytokines have a multitude of additional functions. Due to the unique features of the chickens' immune system, available data from mouse models are not easily transferable; hence we performed an extensive analysis of chicken IRGs. RESULTS: A broad database search for homologues to described mammalian IRGs (common IRGs, cIRGs) was combined with a transcriptome analysis of spleen and lung at different time points after application of IFNα. To apply physiological amounts of IFN, half-life of IFN in the chicken was determined. Interestingly, the calculated 36 min are considerably shorter than the ones obtained for human and mouse. Microarray analysis revealed many additional IRGs (newly identified IRGs; nIRGs) and network analysis for selected IRGs showed a broad interaction of nIRGs among each other and with cIRGs. We found that IRGs exhibit a highly tissue and time specific expression pattern as expression quality and quantity differed strongly between spleen and lung and over time. While in the spleen for many affected genes changes in RNA abundance peaked already after 3 h, an increasing or plateau-like regulation after 3, 6 and 9 h was observed in the lung. CONCLUSIONS: The induction or suppression of IRGs in chickens is both tissue and time specific and beside known antiviral mechanisms type I IFN induces many additional cellular functions. We confirmed many known IRGs and established a multitude of so far undescribed ones, thus providing a large database for future research on antiviral mechanisms and additional IFN functions in non-mammalian species.


Assuntos
Galinhas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reguladores , Interferons/farmacologia , Transcriptoma , Animais , Galinhas/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Citocinas/genética , Citocinas/metabolismo , Bases de Dados Genéticas , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Interferon-alfa/farmacocinética , Interferon-alfa/farmacologia , Interferons/farmacocinética , Interleucina-6/genética , Interleucina-6/metabolismo , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Elementos de Resposta , Transdução de Sinais
12.
Polymers (Basel) ; 9(12)2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-30966022

RESUMO

Neutrophils are able to neutralize pathogens by phagocytosis, by the release of antimicrobial components, as well as by the formation of neutrophil extracellular traps (NETs). The latter possibility is a DNA-meshwork mainly consisting of highly concentrated extracellular histones, which are not only toxic for pathogens, but also for endogenous cells triggering several diseases. To reduce the negative outcomes initiated by extracellular histones, different approaches like antibodies against histones, proteases, and the polysaccharide polysialic acid (polySia) were discussed. We examined whether each of the individual histones is a binding partner of polySia, and analyzed their respective cytotoxicity in the presence of this linear homopolymer. Interestingly, all of the histones (H1, H2A, H2B, H3, and H4) seem to interact with α2,8-linked sialic acids. However, we observed strong differences regarding the required chain length of polySia to bind histone H1, H2A, H2B, H3, and H4. Moreover, distinct degrees of polymerization were necessary to act as a cytoprotective agent in the presence of the individual histones. In sum, the outlined results described polySia-based strategies to bind and/or to reduce the cytotoxicity of individual histones using distinct polySia chain length settings.

13.
Curr Opin Struct Biol ; 44: 9-17, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27816840

RESUMO

Glycoproteins and protein-carbohydrate complexes in the worldwide Protein Data Bank (wwPDB) can be an excellent source of information for glycoscientists. Unfortunately, a rather large number of errors and inconsistencies is found in the glycan moieties of these 3D structures. This review illustrates frequent problems of carbohydrate moieties in wwPDB entries, such as nomenclature issues, incorrect N-glycan core structures, missing or erroneous linkages, or poor glycan geometry, and describes the carbohydrate-specific validation tools that are designed to identify such problems. Recommendations how to avoid these issues or how to rectify incorrect structures are also given.


Assuntos
Carboidratos/química , Animais , Bases de Dados de Proteínas , Humanos , Polissacarídeos/química , Reprodutibilidade dos Testes
14.
ChemMedChem ; 11(9): 990-1002, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27136597

RESUMO

Polysialic acid (polySia) and polySia glycomimetic molecules support nerve cell regeneration, differentiation, and neuronal plasticity. With a combination of biophysical and biochemical methods, as well as data mining and molecular modeling techniques, it is possible to correlate specific ligand-receptor interactions with biochemical processes and in vivo studies that focus on the potential therapeutic impact of polySia, polySia glycomimetics, and sulfated polysaccharides in neuronal diseases. With this strategy, the receptor interactions of polySia and polySia mimetics can be understood on a submolecular level. As the HNK-1 glycan also enhances neuronal functions, we tested whether similar sulfated oligo- and polysaccharides from seaweed could be suitable, in addition to polySia, for finding potential new routes into patient care focusing on an improved cure for various neuronal diseases. The knowledge obtained here on the structural interplay between polySia or sulfated polysaccharides and their receptors can be exploited to develop new drugs and application routes for the treatment of neurological diseases and dysfunctions.


Assuntos
Polissacarídeos/metabolismo , Ácidos Siálicos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Substrato Quinase C Rico em Alanina Miristoilada , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/química , Polissacarídeos/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Ácidos Siálicos/química , Ácidos Siálicos/farmacologia
15.
Curr Top Med Chem ; 16(1): 89-98, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26139116

RESUMO

The Antimicrobial peptides (e.g. defensins, hevein-like molecules and food-protecting peptides like nisin) are able to interact specifically with contact structures on pathogen surfaces. Besides protein receptors, important recognition points for such contacts are provided by pathogen glycan chains or surface lipids. Therefore, structural data concerning surface exposed glycans and lipids are of the highest clinical interest since these recognition functions play a key role when optimising anti-infection therapies. Approaches in nanomedicine and nanopharmacology in which various biophysical techniques such as NMR (Nuclear Magnetic Resonance), AFM (Atomic Force Microscopy), SPR (Surface Plasmon Resonance) and X-ray crystallography can be combined with biochemical and cell-biological methods will lead to improved antimicrobial peptides by this rational drug design approach. Such a strategy is extremely well suited to support clinical studies focussing on an effective fight against multiresistant pathogens. The data sets which are described here can be considered as universal for the design of various antimicrobial drugs against certain pathogens (bacteria, viruses and fungi) which cause severe diseases in humans and animals. Furthermore, these insights are also helpful for progressing developments in the field of food conservation and food preservation. A detailed analysis of the structure-function relationships between antimicrobial peptides and contact molecules on pathogen surfaces at the sub-molecular level will lead to a higher degree of specificity of antimicrobial peptides.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Animais , Infecções Bacterianas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Teoria Quântica , Relação Estrutura-Atividade , Propriedades de Superfície
17.
Methods Mol Biol ; 1273: 43-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25753702

RESUMO

Various glycobioinformatics resources have developed individual carbohydrate sequence formats to store and handle glycan data. This diversity of sequence formats is one of the major reasons for a rather low interoperability of glycobioinformatics resources. The formats have often been optimized to serve special requirements of the individual resources and are thus not fully compatible, but in many cases translation from one format to another is possible. This chapter summarizes some of the major glycan sequence formats and demonstrates the use of tools for translation between these formats. Some pitfalls that users of sequence conversion tools need to pay attention to are also illustrated.


Assuntos
Monossacarídeos/química , Software , Sequência de Carboidratos , Polissacarídeos/química
18.
Methods Mol Biol ; 1273: 87-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25753704

RESUMO

NMR spectroscopy is frequently used in structural characterization of carbohydrates. The GLYCOSCIENCES.de database contains more than 3,000 NMR spectra stored as lists of chemical shifts, which can be searched online by atom and residue names and by chemical shift values. This chapter describes how to use the different interfaces to get access to these data. The atom search allows querying the database for NMR spectra that contain a specific carbohydrate residue with an NMR shift in a given range assigned to a particular atom, whereas the peak search enables queries to find spectra with NMR shifts most similar to a list of given shifts. The shift estimation feature facilitates prediction of NMR shifts of glycans, for which no experimental data are available.


Assuntos
Bases de Dados Factuais , Espectroscopia de Ressonância Magnética , Polissacarídeos/química
19.
Methods Mol Biol ; 1273: 215-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25753714

RESUMO

Protein-carbohydrate interactions are involved in various essential biological events. 3D structural data from the Protein Data Bank (PDB) can help to understand the molecular basis of the specificity of carbohydrate recognition by proteins. Such interactions can be analyzed statistically using GlyVicinity. This chapter exemplifies the usage of this tool to find information on the frequency of the occurrence of specific amino acids in the vicinity of individual carbohydrate residues and to analyze the type of interacting atoms and their spatial distribution around the glycans.


Assuntos
Aminoácidos/análise , Carboidratos/química , Biologia Computacional/métodos , Software , Estatística como Assunto , Sequência de Aminoácidos , Análise por Conglomerados , Bases de Dados de Proteínas , Dados de Sequência Molecular
20.
Methods Mol Biol ; 1273: 229-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25753715

RESUMO

The frequency of glycosylated protein 3D structures in the Protein Data Bank (PDB) is significantly lower than the proportion of glycoproteins in nature, and if glycan 3D structures are present, then they often exhibit a large degree of errors. There are various reasons for this, one of which is a comparably low support of carbohydrates in software tools for 3D structure determination and validation. This chapter illustrates the current features that assist crystallographers with handling glycans during 3D structure determination in Coot and CNS and with validation of the results.


Assuntos
Carboidratos/química , Biologia Computacional/métodos , Software , Bases de Dados de Proteínas , Modelos Moleculares , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA