Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 8(8)2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39082968

RESUMO

BACKGROUND: Chronic HCV infection leads to a complex interplay with adaptive immune cells that may result in B cell dyscrasias like cryoglobulinemia or lymphoma. While direct-acting antiviral therapy has decreased the incidence of severe liver damage, its effect on extrahepatic HCV manifestations such as B cell dyscrasias is still unclear. METHODS: We sequenced B cell receptor (BCR) repertoires in patients with chronic HCV mono-infection and patients with HCV with a sustained virological response (SVR) after direct-acting antiviral therapy. This data set was mined for highly neutralizing HCV antibodies and compared to a diffuse large B cell lymphoma data set. The TKO model was used to test the signaling strength of selected B-BCRs in vitro. Single-cell RNA sequencing of chronic HCV and HCV SVR samples was performed to analyze the transcriptome of B cells with HCV-neutralizing antigen receptors. RESULTS: We identified a B cell fingerprint with high richness and somatic hypermutation in patients with chronic HCV and SVR. Convergence to specific immunoglobulin genes produced high-connectivity complementarity-determining region 3 networks. In addition, we observed that IGHV1-69 CDR1 and FR3 mutations characterizing highly neutralizing HCV antibodies corresponded to recurrent point mutations found in clonotypic BCRs of high-grade lymphomas. These BCRs did not show autonomous signaling but a lower activation threshold in an in vitro cell model for the assessment of BCR signaling strength. Single-cell RNA sequencing revealed that B cells carrying these point mutations showed a persisting oncogenic transcriptome signature with dysregulation in signaling nodes such as CARD11, MALT1, RelB, MAPK, and NFAT. CONCLUSIONS: We provide evidence that lymphoma-like cells derive from the anti-HCV immune response. In many patients, these cells persist for years after SVR and can be interpreted as a mechanistic basis for HCV-related B cell dyscrasias and increased lymphoma risk even beyond viral elimination.


Assuntos
Linfócitos B , Hepacivirus , Hepatite C Crônica , Receptores de Antígenos de Linfócitos B , Transcriptoma , Humanos , Hepatite C Crônica/imunologia , Hepatite C Crônica/genética , Hepatite C Crônica/complicações , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Linfócitos B/imunologia , Hepacivirus/imunologia , Hepacivirus/genética , Resposta Viral Sustentada , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/virologia , Anticorpos Neutralizantes/imunologia , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Masculino , Antivirais/uso terapêutico , Mutação , Feminino , Pessoa de Meia-Idade
2.
Cancers (Basel) ; 15(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37297005

RESUMO

T-cell lymphomas are heterogeneous and rare lymphatic malignancies with unfavorable prognosis. Consequently, new therapeutic strategies are needed. The enhancer of zeste homologue 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 and responsible for lysine 27 trimethylation of histone 3. EZH2 is overexpressed in several tumor entities including T-cell neoplasms leading to epigenetic and consecutive oncogenic dysregulation. Thus, pharmacological EZH2 inhibition is a promising target and its clinical evaluation in T-cell lymphomas shows favorable results. We have investigated EZH2 expression in two cohorts of T-cell lymphomas by mRNA-profiling and immunohistochemistry, both revealing overexpression to have a negative impact on patients' prognosis. Furthermore, we have evaluated EZH2 inhibition in a panel of leukemia and lymphoma cell lines with a focus on T-cell lymphomas characterized for canonical EZH2 signaling components. The cell lines were treated with the inhibitors GSK126 or EPZ6438 that inhibit EZH2 specifically by competitive binding at the S-adenosylmethionine (SAM) binding site in combination with the common second-line chemotherapeutic oxaliplatin. The change in cytotoxic effects under pharmacological EZH2 inhibition was evaluated revealing a drastic increase in oxaliplatin resistance after 72 h and longer periods of combinational incubation. This outcome was independent of cell type but associated to reduced intracellular platinum. Pharmacological EZH2 inhibition revealed increased expression in SRE binding proteins, SREBP1/2 and ATP binding cassette subfamily G transporters ABCG1/2. The latter are associated with chemotherapy resistance due to increased platinum efflux. Knockdown experiments revealed that this was independent of the EZH2 functional state. The EZH2 inhibition effect on oxaliplatin resistance and efflux was reduced by additional inhibition of the regulated target proteins. In conclusion, pharmacological EZH2 inhibition is not suitable in combination with the common chemotherapeutic oxaliplatin in T-cell lymphomas revealing an EZH2-independent off-target effect.

3.
Blood Adv ; 7(12): 2811-2824, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763527

RESUMO

Engraftment and differentiation of donor hematopoietic stem cells is decisive for the clinical success of allogeneic stem cell transplantation (alloSCT) and depends on the recipient's bone marrow (BM) niche. A damaged niche contributes to poor graft function after alloSCT; however, the underlying mechanisms and the role of BM multipotent mesenchymal stromal cells (MSC) are ill-defined. Upon multivariate analysis in 732 individuals, we observed a reduced presence of proliferation-capable MSC in BM aspirates from patients (N = 196) who had undergone alloSCT. This was confirmed by paired analysis in 30 patients showing a higher frequency of samples with a lack of MSC presence post-alloSCT compared with pre-alloSCT. This reduced MSC presence was associated with reduced survival of patients after alloSCT and specifically with impaired graft function. Post-alloSCT MSC showed diminished in vitro proliferation along with a transcriptional antiproliferative signature, upregulation of epithelial-mesenchymal transition and extracellular matrix pathways, and altered impact on cytokine release upon contact with hematopoietic cells. To avoid in vitro culture bias, we isolated the CD146+/CD45-/HLA-DR- BM cell fraction, which comprised the entire MSC population. The post-alloSCT isolated native CD146+MSC showed a similar reduction in proliferation capacity and shared the same antiproliferative transcriptomic signature as for post-alloSCT colony-forming unit fibroblast-derived MSC. Taken together, our data show that alloSCT confers damage to the proliferative capacity of native MSC, which is associated with reduced patient survival after alloSCT and impaired engraftment of allogeneic hematopoiesis. These data represent the basis to elucidate mechanisms of BM niche reconstitution after alloSCT and its therapeutic manipulation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Humanos , Medula Óssea , Antígeno CD146/metabolismo , Células da Medula Óssea , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células
4.
Cancers (Basel) ; 12(2)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079286

RESUMO

Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment, promoting tumor initiation, growth, progression, metastasis, and immune evasion. Recently it was shown that cancer cell-derived exosomes induce a tumor-promoting phenotype in TAMs. Exosome-loaded proteins, DNA, and RNAs may contribute to the macrophage reprogramming. However, the exact mediators and mechanisms, particularly in melanoma, are not known. In this study we examined the effects of cutaneous melanoma-derived exosomes on macrophage function and the underlying mechanisms. First, we showed that exposure to melanoma exosomes induces a tumor-promoting TAM phenotype in macrophages. Sequencing revealed enrichment for several miRNAs including miR-125b-5p in cutaneous melanoma exosomes. We showed that miR-125b-5p is delivered to macrophages by melanoma exosomes and partially induces the observed tumor-promoting TAM phenotype. Finally, we showed that miR-125b-5p targets the lysosomal acid lipase A (LIPA) in macrophages, which in turn contributes to their phenotype switch and promotes macrophage survival. Thus, our data show for the first time that miR-125b-5p transferred by cutaneous melanoma-derived exosomes induces a tumor-promoting TAM phenotype in macrophages.

5.
Sci Rep ; 9(1): 11725, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409840

RESUMO

Tumour growth and metastatic colonization is strongly influenced by the tumour stroma, including cancer-associated fibroblasts (CAF). Multipotent mesenchymal stromal cells (MSC) are a possible source of CAF following myofibroblastic differentiation, and we have previously shown that MSC support tumour growth. Triggered by tumour cell-derived factors like transforming growth factor ß1 (TGF-ß1), myofibroblastic MSC differentiation is associated with the increased expression of markers including alpha smooth muscle actin (α-SMA). Here we show that myocardin-related transcription factor A (MRTF-A) plays an important role in myofibroblastic differentiation of primary human MSC in vitro and their tumour-supporting function in vivo. Recombinant TGF-ß1 or tumour cell conditioned medium (TCM) elevated α-SMA, calponin 1 and collagen 1 A1 (COL1A1) amount on mRNA and protein level in MSC. This correlated with increased MRTF-A activity during MSC differentiation. MRTF-A knockdown by siRNA or shRNA impaired TGF-ß1 and TCM induction of α-SMA and calponin 1, but not of COL1A1. Mixed xenograft experiments using HCT8 colorectal carcinoma cells and primary MSC of different donors revealed a significant reduction in tumour weight and volume upon MRTF-A knockdown in MSC. Our study suggests that MRTF-A is involved in the functional differentiation of MSC towards a tumour-promoting CAF phenotype in vivo.


Assuntos
Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Transativadores/genética , Animais , Biomarcadores , Humanos , Camundongos , Neoplasias/patologia , Transdução de Sinais , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral
6.
PLoS One ; 12(1): e0169921, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28081228

RESUMO

Adult stem cells including multipotent mesenchymal stromal cells (MSC) acquire a high amount of DNA-damage due to their prolonged lifespan. MSC may exert specific mechanisms of resistance to avoid loss of functional activity. We have previously shown that resistance of MSC is associated with an induction of p53 and proliferation arrest upon genotoxic damage. Hypoxia may also contribute to resistance in MSC due to the low oxygen tension in the niche. In this study we characterized the role of p53 and contribution of hypoxia in resistance of MSC to genotoxic damage. MSC exhibited increased resistance to cisplatin induced DNA-damage. This resistance was associated with a temporary G2/M cell cycle arrest, induction of p53- and p21-expression and reduced cyclin B / cdk1-levels upon subapoptotic damage. Resistance of MSC to cisplatin was increased at hypoxic conditions i. e. oxygen <0.5%. However, upon hypoxia the cisplatin-induced cell cycle arrest and expression of p53 and p21 were abrogated. MSC with shRNA-mediated p53 knock-down showed a reduced cell cycle arrest and increased cyclin B / cdk1 expression. However, this functional p53 knock down did not alter the resistance to cisplatin. In contrast to cisplatin, functional p53-knock-down increased the resistance of MSC to etoposide. We conclude that resistance of MSC to genotoxic damage is influenced by oxygen tension but is not generally dependent on p53. Thus, p53-dependent and p53-independent mechanisms of resistance are likely to contribute to the life-long functional activity of MSC in vivo. These findings indicate that hypoxia and different resistance pathways contribute to the phenotype that enables the prolonged lifespan of MSC.


Assuntos
Hipóxia Celular , Cisplatino/toxicidade , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Células da Medula Óssea/citologia , Proteína Quinase CDC2/metabolismo , Células Cultivadas , Ensaio Cometa , Ciclina B/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Etoposídeo/toxicidade , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética
7.
Int J Cancer ; 138(4): 964-75, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26356035

RESUMO

Tumor-stroma interactions play an essential role in the biology of colorectal carcinoma (CRC). Multipotent mesenchymal stromal cells (MSC) may represent a pivotal part of the stroma in CRC, but little is known about the specific interaction of MSC with CRC cells derived from tumors with different mutational background. In previous studies we observed that MSC promote the xenograft growth of the CRC cell-line DLD1. In the present study, we aimed to analyze the mechanisms of MSC-promoted tumor growth using various in vitro and in vivo experimental models and CRC cells of different mutational status. MSC specifically interacted with distinct CRC cells and supported tumor seeding in xenografts. The MSC-CRC interaction facilitated three-dimensional spheroid formation in CRC cells with dysfunctional E-cadherin system. Stable knock-downs revealed that the MSC-facilitated spheroid formation depended on ß1-integrin in CRC cells. Specifically in α-catenin-deficient CRC cells this ß1-integrin-dependent interaction resulted in a MSC-mediated promotion of early tumor growth in vivo. Collagen I and other extracellular matrix compounds were pivotal for the functional MSC-CRC interaction. In conclusion, our data demonstrate a differential interaction of MSC with CRC cells of different mutational background. Our study is the first to show that MSC specifically compared to normal fibroblasts impact early xenograft growth of distinct α-catenin deficient CRC cells possibly through secretion of extracellular matrix. This mechanism could serve as a future target for therapy and metastasis prevention.


Assuntos
Neoplasias Colorretais/patologia , Integrina beta1/metabolismo , Células-Tronco Mesenquimais , Microambiente Tumoral/fisiologia , Animais , Western Blotting , Linhagem Celular Tumoral , Técnicas de Cocultura , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Int J Oncol ; 39(3): 689-96, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21667024

RESUMO

Stromal cells, such as mesenchymal stem cells (MSCs) and carcinoma-associated fibroblasts (CAFs), play a role in cancer progression. To analyze their ability to modulate drug response, we generated spheroids of MCF-7 or MDA-MB-231 breast cancer cells in the absence or presence of human (h)MSCs or hCAFs and tested the susceptibility of the breast cancer cells to three different kinase inhibitors (TKI258, RAD001 and RAF265) used in cancer therapy. While stromal cells did not affect the response of either breast cancer cell line to the PDGFR/FGFR/VEGFR inhibitor TKI258, they sensitized breast cancer cells to the mTOR inhibitor RAD001. In MCF-7 cells, this was accompanied by increased apoptosis. hMSCs and to a lesser extent hCAFs also enhanced the cytotoxic effect of RAF inhibitor RAF265 on MDA-MB-231 cells. Searching for the mechanism that underlies the effect of stromal cells on RAF265 response we found that stromal cells inhibited RAF265-induced increase in ERK1/2 phosphorylation, supported RAF265-dependent downregulation of PKCα (protein kinase Cα) and prevented RAF265-induced conversion of LC3B, a marker of autophagy. To mimic the changes in ERK1/2 phosphorylation and PKCα expression in response to the stromal cells, we treated cells with MEK1 inhibitor U0126 or PKCα inhibitor Gö6976, respectively. U0126, but not Gö6976, was as effective as hMSCs in sensitizing MDA-MB-231 cells to RAF265. This suggests that hMSCs and hCAFs increased the cytotoxic effect of RAF265 on MDA-MB-231 cells by downregulating ERK1/2 phosphorylation. In summary, this study shows that hMSCs are able to render breast cancer cells more susceptible to kinase inhibitors and that, to the most part, hCAFs to which hMSCs can differentiate are able to mimic the drug-sensitizing effects of hMSCs.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Comunicação Celular/fisiologia , Fibroblastos/patologia , Células-Tronco Mesenquimais/patologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Everolimo , Feminino , Humanos , Imidazóis/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Células Estromais/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Quinases raf/antagonistas & inibidores
9.
Cell Mol Life Sci ; 66(18): 3053-65, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19603142

RESUMO

Mesenchymal stem cells (MSCs) have been shown to communicate with tumor cells. We analyzed the effect of human MSCs (hMSCs) on breast cancer cells in three-dimensional cultures. By using GFP expression and immunohistochemistry, we show that hMSCs invade 3D breast cancer cell aggregates. hMSCs caused breast cancer spheroids to become disorganized which was accompanied by a disruption of cell-cell adhesion, E-cadherin cleavage, and nuclear translocation of E-cadherin, but not by epithelial/mesenchymal transition or by an increase in ERK1/2 activity. In addition, hMSCs enhanced the motility of breast cancer cells. Inhibition of ADAM10 (a disintegrin and metalloprotease 10), known to cleave E-cadherin, prevented both hMSC-mediated E-cadherin cleavage and enhanced migration. Our data suggest that hMSCs interfere with cell-cell adhesion and enhance migration of breast cancer cells by activating ADAM10.


Assuntos
Proteínas ADAM/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Neoplasias da Mama/patologia , Caderinas/metabolismo , Proteínas de Membrana/fisiologia , Células-Tronco Mesenquimais/metabolismo , Proteínas ADAM/metabolismo , Proteína ADAM10 , Transporte Ativo do Núcleo Celular , Secretases da Proteína Precursora do Amiloide/metabolismo , Adesão Celular , Movimento Celular , Técnicas de Cocultura , Humanos , Proteínas de Membrana/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA