Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(23): 7025-7032, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832667

RESUMO

Three-dimensional gold and its alloyed nanoporous structures possess high surface areas and strong local electric fields, rendering them ideal substrates for plasmonic molecular detection. Despite enhancing plasmonic properties and altering molecular interactions, the effect of alloy composition on molecular detection capability has not yet been explored. Here, we report molecular interactions between nanoporous gold alloys and charged molecules by controlling the alloy composition. We demonstrate enhanced adsorption of negatively charged molecules onto the alloy surface due to positively charged gold atoms and a shifted d-band center through charge transfer between gold and other metals. Despite similar EM field intensities, nanoporous gold with silver (Au/Ag) achieves SERS enhancement factors (EF) up to 6 orders of magnitude higher than those of other alloys for negatively charged molecules. Finally, nanoporous Au/Ag detects amyloid-beta at concentrations as low as approximately 1 fM, with SERS EF up to 10 orders of magnitude higher than that of a monolayer of Au nanoparticles.

2.
Adv Mater ; : e2403896, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663435

RESUMO

Small-reactor-based polymerase chain reaction (PCR) has attracted considerable attention. A significant number of tiny reactors must be prepared in parallel to capture, amplify, and accurately quantify few target genes in clinically relevant large volume, which, however, requires sophisticated microfabrication and longer sample-to-answer time. Here, single plasmonic cavity membrane is reported that not only enriches and captures few nucleic acids by taking advantage of both capillarity and hydrodynamic trapping but also quickly amplifies them for sensitive plasmonic detection. The plasmonic cavity membrane with few nanoliters in a void volume is fabricated by self-assembling gold nanorods with SiO2 tips. Simulations reveal that hydrodynamic stagnation between the SiO2 tips is mainly responsible for the trapping of the nucleic acid in the membrane. Finally, it is shown that the plasmonic cavity membrane is capable of enriching severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes up to 20 000-fold within 1 min, amplifying within 3 min, and detecting the trace genes as low as a single copy µL-1. It is anticipated that this work not only expands the utility of PCR but also provides an innovative way of the enrichment and detection of trace biomolecules in a variety of point-of-care testing applications.

3.
Adv Mater ; 34(5): e2106225, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34796554

RESUMO

A super-boosted hybrid plasmonic upconversion (UC) architecture comprising a hierarchical plasmonic upconversion (HPU) film and a polymeric microlens array (MLA) film is proposed for efficient photodetection at a wavelength of 1550 nm. Plasmonic metasurfaces and Au core-satellite nanoassembly (CSNA) films can strongly induce a more effective plasmonic effect by providing numerous hot spots in an intense local electromagnetic field up to wavelengths exceeding 1550 nm. Hence, significant UC emission enhancement is realized via the amplified plasmonic coupling of an HPU film comprising an Au CSNA and UC nanoparticles. Furthermore, an MLA polymer film is synergistically coupled with the HPU film, thereby focusing the incident near-infrared light in the micrometer region, including the plasmonic nanostructure area. Consequently, the plasmonic effect super-boosted by microfocusing the incident light, significantly lowers the detectable power limit of a device, resulting in superior sensitivity and responsivity at weak excitation powers. Finally, a triple-cation perovskite-based photodetector coupled with the hybrid plasmonic UC film exhibits the excellent values of responsivity and detectivity of 9.80 A W-1 and 8.22 × 1012 Jones at a weak power density of ≈0.03 mW cm-2 , respectively, demonstrating that the device performance is enhanced by more than 104 magnitudes over a reference sample.

4.
Cancers (Basel) ; 13(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34572752

RESUMO

High LOX levels in the tumor microenvironment causes the cross-linking of extracellular matrix components and increases the stiffness of tumor tissue. Thus, LOX plays an important role in tumorigenesis and in lowering the tumor response to anticancer drugs. Despite comprehensive efforts to identify the roles of LOX in the tumor microenvironment, sensitive and accurate detection methods have not yet been established. Here, we suggest the use of gold nanoparticles functionalized with LOX-sensitive peptides (LS-AuNPs) that aggregate upon exposure to LOX, resulting in a visual color change. LOX-sensitive peptides (LS-peptides) contain lysine residues that are converted to allysine in the presence of LOX, which is highly reactive and binds to adjacent allysine, resulting in the aggregation of the AuNPs. We demonstrated that the synthesized LS-AuNPs are capable of detecting LOX sensitively, specifically both in vitro and in the tissue extract. Moreover, the suggested LS-AuNP-based assay is more sensitive than commonly employed assays or commercially available kits. Therefore, the LS-AuNPs developed in this study can be used to detect LOX levels and can be further used to predict the stiffness or the anticancer drug resistance of the tumor.

5.
Langmuir ; 35(7): 2719-2727, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30667231

RESUMO

Manipulation of both pore diameters and heights of two-dimensional periodic porous polymer films is important to extensively control their characteristics. However, except for using different sized colloid templates in replication methods, an effective method that tunes these factors has rarely been reported. We found that both parameters are controllable by adjusting the flow behaviors of polystyrene colloids and curing resin precursors during the preparation of phenolic resin and poly(dimethylsiloxane) periodic porous films by embedding their precursors into colloidal crystal monolayers. We adjust the flow behaviors by either varying film preparation temperatures (≥glass transition temperature of polystyrene) or using the precursors mixed with different amounts of solvents that renders the colloids viscous. Consequently, the pore diameters and film heights change by 36-56 and 56-84%, respectively. Such modulation results in the change in height to diameter ratios and the areal fractions of resins at air-film interfaces, thereby significantly changing the water contact angles on these surfaces and their photonic characteristics. This straightforward method does not require additional steps, differently sized colloids, or different amounts of precursors for these parameter controls.

6.
ACS Appl Mater Interfaces ; 9(50): 43563-43574, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29172431

RESUMO

It is necessary to understand the surface structural effects of electrodes on the bioalcohol productivity of Shewanella oneidensis MR-1, but this research area has not been deeply explored. Here, we report that the electricity-assisted isobutanol productivity of Shewanella oneidensis MR-1::pJL23 can be enhanced by sequentially modifying a graphite felt (GF) surface with Au nanoislands (Au), cysteamine (NH2), and Au nanoparticles (Au NPs). After bacteria were incubated for 50 h with the unmodified GF under various electrode potentials (vs Ag/AgCl), the bacterial isobutanol concentrations increased from 2.9 ± 1 mg/L under no electricity supply to a maximum of 5.9 ± 1 mg/L at -0.6 V. At this optimum electrode potential, the concentrations continued increasing to 9.1 ± 1, 14 ± 2, and 27 ± 2 mg/L when the GF electrodes were modified with Au, NH2-Au, and Au NP-NH2-Au, respectively. We further studied how each surface structure affected the bacterial adsorptions, current profiles, and biofilms' electrochemical performances. In particular, these modifications induced the adsorption of elongated bacteria, with the amount dependent on the electrode structure. In the presence of electric supply, the amount of elongated bacteria further increased. We also found that the NH2-Au-GF and Au NP-NH2-Au-GF electrodes themselves could increase the concentrations to 11 ± 0.3 and 12 ± 2 mg/L, respectively, upon the bacterial incubation without electricity. Among the electrodes tested, the contribution of electricity to the bacterial isobutanol production was the greatest with the Au NP-NH2-Au-GF electrode. After 96 h of incubation, the concentration increased to 72 ± 2 mg/L, which was 4.7 and 3.7 times the previously reported values obtained without and with electricity, respectively.


Assuntos
Eletrodos , Shewanella , Fontes de Energia Bioelétrica , Butanóis , Coloides , Cisteamina , Eletricidade , Ouro , Grafite , Nanoestruturas
7.
Anal Chim Acta ; 933: 196-206, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27497013

RESUMO

We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences.


Assuntos
Acetatos/metabolismo , Butiratos/metabolismo , Escherichia coli/metabolismo , Ouro/metabolismo , Ácido Láctico/biossíntese , Nanopartículas Metálicas/química , Acetatos/análise , Butiratos/análise , Colorimetria , Engenharia Genética , Ouro/química , Ácido Láctico/análise , Fotografação , Espectrofotometria Ultravioleta
8.
Analyst ; 141(15): 4632-9, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27215291

RESUMO

We present a route that estimates the scattering/absorption characteristics of plasmonic nanoparticles by using fluorescence and UV-visible spectroscopy. Because elastic scattering of nanoparticles caused by a monochromatic incident light is reflected in fluorescence emission spectra when recording at the excitation wavelength, the scattering intensities at the excitation wavelength during fluorescence emission scans are used to compare the scattering characteristics of various plasmonic nanoparticles under conditions where the extinction values of all of the nanoparticles are kept constant at this wavelength. For the two excitation wavelengths (519 and 560 nm) we investigated, the scattering intensities of spherical gold nanoparticles increase with increasing size (15, 33, 51, 73, and 103 nm in diameter). These results are correlated with the nanoparticles' scattering efficiencies (the ratios of scattering to the extinction cross-sections), which are theoretically calculated in the literature using Mie theory. Then, linear calibration equations at each wavelength are derived to estimate the scattering efficiencies of two Au nanorods, Au nanocages, and spherical Ag nanoparticles (15, 25, 37, and 62 nm). The values are very comparable with literature values. For various purposes such as biomedicine and optoelectronics, the present method could be beneficial to those who wish to easily compare and determine the scattering characteristics of various plasmonic nanoparticles at a certain wavelength by using commercially-available spectroscopic techniques.

9.
Anal Chem ; 86(13): 6675-82, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24915575

RESUMO

We report a method for controlling the detection sensitivity to or the degree of etching of Ag nanocubes by radicals by modifying their surfaces with poly(acrylic acid) or poly(allylamine hydrochloride) for wide-range quantification of radical compounds. The degree of Ag nanocube etching is influenced by the concentrations of the polyelectrolytes used for modification. These polyelectrolytes protect the Ag nanocubes, probably by either retarding (forming diffusion barriers) or preventing (blocking/entrapping/scavenging) the arrival of radicals to Ag nanocubes, or both. The weights of the two roles are different depending on the polyelectrolyte type; therefore, the sensitivities of Ag nanocubes are also influenced by this factor. The roles of the polyelectrolytes were demonstrated by using radical compounds produced from tetrahydrofuran and H2O2 and further confirmed with Ag nanospheres. Using the results, the radical sensitivities and detection ranges of polyelectrolyte-modified Ag nanoparticles could be manipulated. Moreover, we produced calibration curves for the wide-range quantification of radical compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA