Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 9(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36290471

RESUMO

High-intensity, low-frequency magnetic fields (MFs) have been widely used in the treatment of diseases and in drug delivery, even though they could induce structural changes in pharmacological molecules. Morphological changes in ketoprofen and KiOil were investigated through Fourier-transform infrared spectroscopy (FT-IR). Unsupervised principal component analysis was carried out for data clustering. Clinical validation on 22 patients with lower back pain was managed using diamagnetic therapy plus topical ketoprofen or KiOil. The Numerical Rating Scale (NRS) and Short-Form Health Survey 36 (SF-36) were used to evaluate clinical and functional response. Ketoprofen showed clear clustering among samples exposed to MF (4000−650 cm−1), and in the narrow frequency band (1675−1475 cm−1), results evidenced structural changes which involved other excipients than ketoprofen. KiOil has evidenced structural modifications in the subcomponents of the formulation. Clinical treatment with ketoprofen showed an average NRS of 7.77 ± 2.25 before and an average NRS of 2.45 ± 2.38 after MF treatment. There was a statistically significant reduction in NRS (p = 0.003) and in SF-36 (p < 0.005). Patients treated with KiOil showed an average NRS of 7.59 ± 2.49 before treatment and an average NRS of 1.90 ± 2.26 after treatment (p < 0.005). SF-36 showed statistical significance for all items except limitations due to emotional problems. A high-intensity pulsed magnetic field is an adjunct to topical treatment in patients with localized pain, and the effect of MF does not evidence significant effects on the molecules.

2.
Sensors (Basel) ; 20(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899869

RESUMO

Low frequency ultrasounds in air are widely used for real-time applications in short-range communication systems and environmental monitoring, in both structured and unstructured environments. One of the parameters widely evaluated in pulse-echo ultrasonic measurements is the time of flight (TOF), which can be evaluated with an increased accuracy and complexity by using different techniques. Hereafter, a nonstandard cross-correlation method is investigated for TOF estimations. The procedure, based on the use of template signals, was implemented to improve the accuracy of recursive TOF evaluations. Tests have been carried out through a couple of 60 kHz custom-designed polyvinylidene fluoride (PVDF) hemicylindrical ultrasonic transducers. The experimental results were then compared with the standard threshold and cross-correlation techniques for method validation and characterization. An average improvement of 30% and 19%, in terms of standard error (SE), was observed. Moreover, the experimental results evidenced an enhancement in repeatability of about 10% in the use of a recursive positioning system.

3.
BMC Neurosci ; 19(1): 34, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29895259

RESUMO

BACKGROUND: Non-depolarizing magnetic fields, like low frequency-pulsed electromagnetic fields (LF-PEMFs) have shown the ability to modulate living structures, principally by influencing synaptic activity and ion channels on cellular membranes. Recently, the CTU Mega 20 device was presented as a molecular accelerator, using energy up to 200 J and providing high-power (2 Tesla) pulsating fields with a water-repulsive (diamagnetic) action and tissue biostimulation. We tested the hypothesis that LF-PEMFs could modulate long-term corticospinal excitability in healthy brains by applying CTU Mega 20®. Ten healthy subjects without known neurological and/or psychiatric diseases entered the study. A randomized double-blind sham-controlled crossover design was employed, recording TMS parameters (amplitude variation of the motor evoked potential as index of cortical excitability perturbations of the motor system) before (pre) and after (post + 0, + 15, + 30 min) a single CTU Mega 20 session on the corresponding primary right-hand motor area, using a real (magnetic field = 2 Tesla; intensity = 90 J; impulse frequency = 7 Hz; duration = 15 min) or sham device. A two-way repeated measures ANOVA with TIME (pre, post + 0, + 15, + 30 min) and TREATMENT (real vs. sham stimulation) as within-subjects factor was applied. RESULTS: A significant TIME × TREATMENT interaction was found (p < 0.001). Post hoc comparisons showed a significant effect of TIME, with significant differences at + 0, + 15 and + 30 min compared to baseline after real stimulation (all p < 0.05) but not after sham stimulation (all p < 0.05) and significant effects of TREATMENT, with significant differences at + 0, + 15 and + 30 min for real stimulation compared to sham stimulation (all p < 0.005). No significant depolarizing effects were detected throughout the (real) stimulation. CONCLUSIONS: Our proof-of-concept study in healthy subjects supports the idea that non-ionizing LF-PEMFs induced by the CTU Mega 20 diamagnetic acceleration system could represent a new approach for brain neuromodulation. Further studies to optimize protocol parameters for different neurological and psychiatric conditions are warranted. Trial Registration The present work has been retrospectively registered as clinical trial on ClinicalTrials.gov NCT03537469 and publicly released on May 24, 2018.


Assuntos
Encéfalo/fisiologia , Potencial Evocado Motor/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Adulto , Campos Eletromagnéticos , Feminino , Humanos , Masculino , Estudos Retrospectivos , Estimulação Magnética Transcraniana/métodos
4.
Comput Methods Programs Biomed ; 100(1): 49-58, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20356647

RESUMO

Congenital nystagmus is an ocular-motor disorder characterised by involuntary, conjugated and bilateral to and fro ocular oscillations. In this study a method to recognise automatically jerk waveform inside a congenital nystagmus recording and to compute foveation time and foveation position variability is presented. The recordings were performed with subjects looking at visual targets, presented in nine eye gaze positions; data were segmented into blocks corresponding to each gaze position. The nystagmus cycles were identified searching for local minima and maxima (SpEp sequence) in intervals centred on each slope change of the eye position signal (position criterion). The SpEp sequence was then refined using an adaptive threshold applied to the eye velocity signal; the outcome is a robust detection of each slow phase start point, fundamental to accurately compute some nystagmus parameters. A total of 1206 slow phases was used to compute the specificity in waveform recognition applying only the position criterion or adding the adaptive threshold; results showed an increase in negative predictive value of 25.1% using both features. The duration of each foveation window was measured on raw data or using an interpolating function of the congenital nystagmus slow phases; foveation time estimation less sensitive to noise was obtained in the second case.


Assuntos
Interpretação de Imagem Assistida por Computador , Nistagmo Congênito/fisiopatologia , Algoritmos , Humanos , Itália
5.
Med Eng Phys ; 31(9): 1166-72, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19671494

RESUMO

The aim of this study is to highlight the relationship between muscle motion, generated by whole body vibration, and the correspondent electromyographic (EMG) activity and to suggest a new method to customize the stimulation frequency. Simultaneous recordings of EMG and tri-axial accelerations of quadriceps rectus femoris from fifteen subjects undergoing vibration treatments were collected. Vibrations were delivered via a sinusoidal oscillating platform at different frequencies (10-45 Hz). Muscle motion was estimated by processing the accelerometer data. Large EMG motion artifacts were removed using sharp notch filters centred at the vibration frequency and its superior harmonics. EMG-RMS values were computed and analyzed before and after artifact suppression to assess muscular activity. Muscles acceleration amplitude increased with frequency. Muscle displacements revealed a mechanical resonant-like behaviour of the muscle. Resonance frequencies and dumping factors depended on subject. Moreover, RMS of artifact-free EMG was found well correlated (R(2)=0.82) to the actual muscle displacement, while the maximum of the EMG response was found related to the mechanical resonance frequency of muscle. Results showed that maximum muscular activity was found in correspondence to the mechanical resonance of the muscle itself. Assuming the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization (i.e. to choose the best stimulation frequency) could be obtained by simply monitoring local acceleration (resonance), leading to a more effective muscle stimulation. Motion artifact produced an overestimation of muscle activity, therefore its removal was essential.


Assuntos
Eletromiografia/instrumentação , Eletromiografia/métodos , Músculos/fisiologia , Aceleração , Adulto , Artefatos , Fenômenos Biomecânicos , Simulação por Computador , Desenho de Equipamento , Humanos , Masculino , Movimento (Física) , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculos/patologia , Estresse Mecânico , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA